The required volume of motion cues for full flight simulation of civil aircraft stall cases

Aeronautical and Space-Rocket Engineering


DOI: 10.34759/vst-2023-2-169-178

Аuthors

Arkhangel’skii Y. A., Zaichik L. E.*, Kuz’min P. V.**, Sorokin S. A., Shirokikh V. P.***

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: zaichik@tsagi.ru
**e-mail: flight15@tsagi.ru
***e-mail: vadim_nt@mail.ru

Abstract

A large number of aviation accidents, referred to as Loss-of-Control in flight (LOC-I), led to the keen interest to motion cueing fidelity while on-ground simulation of civil aircraft stall cases.

Analysis of flight records reveals that any of stall cases may be divided into two stages, namely before and after the stall, which differ by motion cues amplitude-frequency content. This difference is determined by the difference in types of piloting task since before the stall the piloting task relates to the stabilization type task, when a pilot operates in the closed loop, while after the stall it relates to the maneuver-type task, when a pilot operates in the open loop.

According to the approaches developed at TsAGI, the types of motion cues distortions differ depending on piloting task as well. In stall simulating, it is the stage of stall recovering which causes the main concern, since the false cues arising in the course of this maneuver simulation can considerably distort the real aircraft behavior.

Thus, the following assumption on the required volume of the motion cues for the stall simulation was put forward:

1) the stage of aircraft approaching the stall needs motion cues reproduction in full;

2) the stage of aircraft stall recovering needs motion cues limited by those typical of buffeting in heave and sway.

To prove the assumption, special experiments were conducted on the TsAGI flight simulator, in which four experienced flight-test pilots participated.

Three different combinations of motion cues were considered in the course of experiments:

— no motion cues were reproduced (immovable bench);

— only buffeting was reproduced;

— motion cues were reproduced in full volume (full flight simulation).

The model of a hypothetical line-haul aircraft (SUPRA) was employed.

The results of experiments had proved the assumption concerning the required volume of motion cues for aircraft stall simulation and led to the following conclusions:

  1. With account for the amplitude-frequency content of motion cues, as well as motion cues role in piloting and types of motion cues distortions, the simulation process of aircraft stall can be divided into two stages: before aircraft stall (stall approaching) and after aircraft stall (stall recovering).
  2. Based on the experiments, the article demonstrates that the «stall approaching» stage requires full flight simulation, buffeting included; «stall recovering» stage requires reproduction of buffeting only.
  3. For the «stall recovering» stage, the full reproduction of motion cues was assessed by the pilots as the least acceptable one among the considered options.

The obtained results may be employed in aviation design bureaus and research institutes, as well as in aviation crew training centers.

Keywords:

ground-based flight simulators, flight simulation, motion cues, stall, upset, buffeting, pilot-aircraft system, high angles of attack (AoA), Loss-of-control (LOC), motion drive algorithms, motion fidelity criteria

References

  1. Dubov Yu.B. Dinamika manevrennogo samoleta na bol’shikh uglakh ataki (Dynamics of maneuverable aircraft at high angles of attack), Saint Petersburg, SPbGETU «LETI», 2018, 391 p.
  2. Dubov Yu.B., Studnev R.V. Trudy TsAGI. Vypusk 1771, Moscow, TsAGI, 1976, 29 p.
  3. A Statistical Analysis of Commercial Aviation Accidents 1958-2021, Airbus, 2022.URL: https://accidentstats.airbus.com/statistics/accident-categories
  4. Statistical summary of commercial jet airplane accidents, 2021. URL: https://skybrary.aero/sites/default/files/bookshelf/32664.pdf
  5. 2021 Safety Report. IATA, Edition 58, 2022. URL: https://www.iata.org/contentassets/4d18cb077c5e419b8a888d387a50c638/iata-safety-report-2021.pdf
  6. Doc. 10011, AN/506. Rukovodstvo po podgotovke dlya predotvrashcheniya popadaniya samoleta v slozhnye prostranstvennye polozheniya i vyvoda iz nikh (ICAO. Doc. 10011, AN/506. Preparation guidelines for preventing the aircraft from entering and exiting difficult spatial positions), Montreal, Mezhdunarodnaya organizatsiya grazhdanskoi aviatsii, 2014, 124 p.
  7. Zaichik L.E., Yashin Y.P., Desyatnik P.A. Motion Fidelity Criteria for Large-Amplitude Tasks. AIAA Modeling and Simulation Technologies Conference (10-13 August 2009; Chicago, Illinois). AIAA 2009-5916. DOI: 10.2514/6.2009-5916
  8. Zaichik L.E., Yashin Y.P., Desyatnik P.A. Peculiarities of Motion Cueing for Precision Control Tasks and Maneuvers. 27th International Congress of the Aeronautical Sciences (19-24 September 2010; Nice, France). ICAS Paper 602. URL: https://icas.org/icas_archive/icas2010/papers/602.pdf
  9. Kalachev G.S. Samolet, letchik i bezopasnost’ poleta (Aircraft, pilot and flight safety), Moscow, Mashinostroenie, 1979, 222 p.
  10. White A.D., Rodchenko V.V. Motion Fidelity Criteria Based on Human Perception and Performance. AIAA Modeling and Simulation Technologies Conference and Exhibit (09-11 August 1999; Portland, OR, USA), 485-493. AIAA-99-4330. DOI: 10.2514/6.1999-4330
  11. Efremov A.V., Ogloblin A.V. Progress in investigations of aircraft-pilot systems. Aerospace MAI Journal, 2005, vol. 12, no. 2, pp. 18-29.
  12. Efremov A.V., Ogloblin A.V., Rodchenko V.V., Predtechenskii A.N. Letchik kak dinamicheskaya Sistema (Pilot as a dynamic system), Moscow, Mashinostroenie, 1992, 336 p.
  13. Zaichik L.E., Rodchenko V.V., Rufov I.V. et al. Acceleration Perception. AIAA Modeling and Simulation Technologies Conference and Exhibit (09-11 August 1999; Portland, OR, USA), 512-530. AIAA-99-4334. DOI: 10.2514/6.1999-4334
  14. 14. Zaichik L.E., Yashin Y.P., Desyatnik P.A. Some Aspects of Moving-Base Simulation of Upset Recovering Maneuver. 28th International Congress of the Aeronautical Sciences (23-28 September 2012; Brisbane, Australia). URL: https://icas.org/icas_archive/icas2012/papers/765.pdf
  15. Rodchenko V.V., Boris S.Yu., White A.D. In-Flight Estimation of Pilots’ Acceleration Sensitivity Thresholds. AIAA Modeling and Simulation Technologies Conference (14-17 August 2000; Denver, CO, USA). AIAA-2000-4292. DOI: 10.2514/6.2000-4292
  16. 16. Simulation of Upset Recovery in Aviation. Final Report Summary — SUPRA. Project ID: 233543, Seventh Framework Programme — Transport, 2012.
  17. Abramov N.B., Goman M.G., Khrabrov A.N., Soemarwoto B.I. Aerodynamic Modeling for Poststall Flight Simulation of a Transport Airplane. Jornal of Aircraft, 2019, vol. 56, no. 4, pp. 1427-1440. DOI: 10.2514/1.C034790
  18. Kuzmin P.V., Surkov N.A., Shelyukhin Y.F. Mathematical model of commercial airplane dynamics at stall. 31st Congress of the International Council of the Aeronautical Science (09-14 September 2018; Belo Horizonte, Brazil). URL: https://icas.org/icas_archive/icas2018/data/papers/icas2018_0016_paper.pdf
  19. Trifonova T.I., Shelyukhin Y.F., Shukhovtsov D.V. A model of non-stationary aerodynamic longitudinal characteristics. Aerospace MAI Journal, 2016, vol. 23, no. 2, pp. 24-41.
  20. Doc. 9817 AN/449. Rukovodstvo po sdvigu vetra na malykh vysotakh (ICAO. Doc. 9817 AN/449. A guide to wind shear at low altitudes), Montreal, Mezhdunarodnaya organizatsiya grazhdanskoi aviatsii, 2005, 258 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI