Setting-up artificial gas-dust plasma formation for clearing near-Earth space from space debris

Aeronautical and Space-Rocket Engineering


Аuthors

Ustinov A. N.

Machine-Building plant “Arsenal”, 1-3, Komsomola str., Saint Petersburg, 195009, Russia

e-mail: Ustinov@mzarsenal.com

Abstract

The intensive exploitation of the near-Earth space is accompanied by the accumulation of high-speed space debris (SD) in this area, which disposal is becoming an important problem for our civilization. The methods developed by us for the of orbital space debris disposal propose employing large-sized artificial plasma formations (APF), with which help of the process of the spacecraft aerodynamic deceleration is intensified for subsequent thermal disposal. With this end in view, a large-diameter APF is being formed around space debris, which creation is being accomplished with the gas-dust environment generator. The impact of the outer space radiation forms ionization processes in the generator gas and dust environment, which, in its turn, ensures formation of a carrier system consisting of solid space debris objects and the gas and dust plasma surrounding them. Due to the fact that the gas-dust plasma medium consists of charged particles, differing greatly from each other in mass, they have proportionally large differences in the speed of movement and the associated intensity of condensation on the surfaces of solid objects of space debris. The said fact leads to dominating condensation of the light – electronic plasma component on the space debris surfaces, creating a negative charge on them, which, in its turn, leads to the positive charge forming in the APF volume. This selective charge distribution stipulates the electrostatic (Coulomb) interactions forming that attract the ingredients of the IPO structure (CM and plasma atmosphere) to each other. The sources of extra ionization are being employed at the expense of radionuclide additives application in the generator plasma, spontaneously radiating ionizing radiation, to intensify electrostatic interaction in the APF. Besides, the degree of the APF medium ionization is being increased due to utilizing easily ionizing alkaline and alkaline earth substances, possessing low ionization potentials, in its composition. Thus, the external dispersing impacts of the aerodynamic forces of the Earth atmosphere traces are being surpassed by the Coulomb electrostatic attractions inside the APF. The process of intense deceleration of such a large formation leads to a multiple decrease in the period of its ballistic existence, terminating when it reaches the dense layers of the Earth atmosphere, where its thermal disposal happens.

Keywords:

artificial plasma formation, spacecraft, near-Earth space, eigen external atmosphere, finely dispersed gaseous-dust medium

References

  1. Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Kosmicheskii musor. Fundamental’nye i prakticheskie aspekty ugrozy” (17–19 April 2019; IKI RAN, Moscow). Moscow, IKI RAN, 88 p.

  2. Veniaminov S.S., Chervonova A.M. Kosmicheskii musor – ugroza chelovechestvu (Space debris is a threat to humanity), Moscow, IKI RAN, 2013, 208 p.

  3. European Space Agency: About space debris. URL: https://www.esa.int/Space_Safety/Space_Debris/About_space_debris

  4. National Aeronautics and Space Administration: Space Debris and Human Spacecraft. URL: https://www.nasa.gov/mission_pages/station/news/orbital_debris.html

  5. Mozzhorin Yu.A., Chekalin S.V. Kosmos i ekologiya. Sbornik statei, Moscow, Znanie, 1991, pp. 5-21.

  6. Nazarenko A.I. Prognoz zasorennosti OKP na 200 let i sindrom Kesslera. URL: http://satmotion.ru/engine/documents/document85.pdf

  7. Testoedov N.A., Ustinov A.N., Ivanov K.M. et al. Patent RU 2773991 C1, 14.06.2022.

  8. Mironov V.V., Usovik I.V. Kosmicheskie issledovaniya, 2020, vol. 58, no. 2, pp. 117-130.

  9. Iguminova V.A., Karyuchina A.E., Rekhovskaya E.O. Materialy IX Mezhdunarodnoi nauchnoi konferentsii “Issledovaniya molodykh uchenykh” (April 2020; Kazan). Kazan, Molodoi uchenyi, 2020, pp. 14-17.

  10. Sapego M.K., Testoedov N.A., Atamasov V.D. et al. Teoriya proektirovaniya slozhnykh tekhnicheskikh sistem kosmicheskogo bazirovaniya (Theory of designing complex technical space- based systems), St. Petersburg, Professional, 2012, 559 p.

  11. Fizika kosmicheskogo prostranstva (Physics of Outer Space). URL: http://sovet.cosmos.ru/sites/default/files/cospar_r6.pdf

  12. Akishin A.I. Materialy VIII Mezhvuzovskoi nauchnoi shkoly molodykh spetsialistov “Kontsentrirovannye potoki energii v kosmicheskoi tekhnike, elektronike, ekologii i meditsine” (19-20 November 2007). Moscow, NIIYaF MGU, 2007, pp. 15-19.

  13. Atamasov V.D., Babuk V.A., Nemykin S.A., Romanov A.V., Sokolov Yu.A., Ustinov A.N. Yadernye orbital’nye kompleksy (Nuclear orbital complexes), St. Petersburg, KB “Arsenal” im. M.V Frunze, 2016, 800 p.

  14. Haffner J.W. Radiation and Shielding in Space. Academic Press Inc., U.S., 1968, 347 p.

  15. Solnechnoe zatmenie po zakazu. In “Tekhnika-molodezhi”, 1978, no. 5, pp. 21-23.

  16. Tobol’skii A. Osvoenie kosmosa. URL: http://scorcher.ru/art/science/space/space.php

  17. Blagoveshchenskaya N.F. Geofizicheskie effekty aktivnykh vozdeistvii v okolozemnom kosmicheskom prostranstve (Geophysical effects of active impacts in near-Earth space), Doctor’s thesis, St. Petersburg, 2002, 334 p.

  18. Kravtsov Yu.A., Orlov Yu.I. Geometricheskaya optika neodnorodnykh sred (Geometric optics of inhomogeneous media), Moscow, Nauka, 1980, 304 p.

  19. Filipp N.D., Oraevskii V.N., Blaunshtein N.Sh., Ruzhin Yu.Ya. Evolyutsiya iskusstvennykh plazmennykh neodnorodnostei v ionosfere Zemli (Evolution of artificial plasma inhomogeneities in the Earth’s ionosphere), Kishinev, Shtiintsa, 1986, 246 p.

  20. Mil’kovskii A.G., Atamasov V.D., Kolbasin I.V., Ustinov A.N., Kalinina A.M. New phenomena in the space experiment on creating an artificial solar eclipse while the spaceships “APOLLO”-“SOYUZ” joint flight. Aerospace MAI Journal, 2019, vol. 26, no. 3, pp. 144-151.

  21. Krymskii G.F., Petukhov S.I., Starodubtsev S.A. Nauka i tekhnika v Yakutii, 2022, no. 1(42), pp. 8-14. DOI: 10.24412/1728-516X-2022-1-8-14

  22. Kolbasin I.V. Main sources and radiation composition affecting eigen external atmosphere of a spacecraft with nuclear power plant. Aerospace MAI Journal, 2020, vol. 27, no. 2, pp. 123-130. DOI: 10.34759/vst-2020- 2-23-130

  23. Chebotaev V.E., Kosenko V.E. Osnovy proektirovaniya kosmicheskikh apparatov informatsionnogo obespecheniya (Fundamentals of designing spacecraft for information support), Krasnoyarsk, SibGAU, 2011, 486 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI