Multi-criteria selection of unmanned aerial vehicle rational layout characteristics at multi-impulse mode of motion

Aeronautical and Space-Rocket Engineering


Аuthors

Balyk V. M.*, Gaidarov D. D., Sotskov I. A.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: balikv@gmail.com
**e-mail: Ivansotskov@mail.ru

Abstract

The article considers the problem of an unmanned aerial vehicle (UAV) with a solid propellant rocket engine designing. One of the ways for the UAVs efficiency enhancing consists in qualitative improving of the design choices being made. The issues of the design links restoring between the project parameters and the UAV functioning conditions are of special meaningfulness while the UAV modeling. These design links are being restored from the samplings obtained by the UAV mathematical model probing. The project links are being constructed in the class of harmonic polynomials by the static regularity criterion, which optimization is being performed by the original method of the global extremum seeking. Mass, flight performance, economic and operational indicators as well as other criterion characteristics may be accepted as a goal function. The article being presented assumes the UAV flight range as an optimality criterion. The UAV efficiency increasing is associated with highly accurate small-sized and moving targets hitting, which leads to the necessity of the UAVs power plants further improving. The UAV efficiency, like any other aerial vehicle type, is a complex indicator, determining the UAV flight range. The highest augment in the UAV flight range may be reached through the solid-fuel rocket-ramjet engines application (SFRRE). Such engines improvement is being accomplished by way of working process and power plant structure, as well as specific-mass and energy properties of solid fuels selection. The supersonic air intake device makes significant contribution to the working process quality. In this regard, the air compressing process efficiency in the air intake is of significant importance.

Parameters selection of the power plant with the SFRRE as well as the UAV parameters, ensuring the maximum flight range of the rocket with a fixed launch weight and specified fuel margin was performed. The fuel-flow rate at the cruising section as well as inlet ant outlet cross-sections areas of the air intake are assumed as variable parameters. Optimal selection of the inlet and outlet cross-sections area of the air intake and fuel consumption allowed increasing the UAV flight range by 5.842% for the 1000 m flight altitude, and by 12.283% for the flight altitude of 10000 m.

Keywords:

unmanned aerial vehicle, flight range, flight time, ramjet engine, air intake, aerodynamic coefficients, harmonic polynomials, statistical sampling

References

  1. Sorokin V.A. (ed.) Konstruktsiya i proektirovanie kombinirovannykh raketnykh dvigatelei na tverdom toplive (Design and design of combined rocket engines on solid fuel), Moscow, MGTU im. N.E. Baumana, 2014, 304 p.

  2. Sorokin V.A., Kozlov V.A., Sharov M.S. Raketno- pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh. Osnovy proektirovaniya i eksperimental’noi otrabotki (Rocket-ramjet engines on solid and pasty fuels. Fundamentals of design and experimental development), Moscow, Fizmatlit, 2010, 320 p.

  3. Surikov E.V., Sharov M.S., Yanovskii L.S. Boepripasy, 2016, pp. 16-23.

  4. Sorokin V.A. Proektirovanie i otrabotka raketno- pryamotochnykh dvigatelei na tverdom toplive (Design and development of rocket-ramjet engines on solid fuel), Moscow, MGTU im. N.E. Baumana, 2016, 320 p.

  5. Volkov V.T., Yagodnikov D.A. Issledovaniya i stendovaya otrabotka RDTT (Research and bench testing of RDTT), Moscow, MGTU im. N.E. Baumana, 2007, 296 p.

  6. Balyk V.M., Borodin I.D., Gaidarov D.D., Maikova N.V. Multi-criteria selection of the unmanned aerial vehicle two-impulse mode of motion. Aerospace MAI Journal, 2023, vol. 30, no. 1, pp. 54-63. DOI: 10.34759/vst-2023-1-54-63

  7. Fakhrutdinov I.Kh., Kotel’nikov A.V. Konstruktsiya i proektirovanie raketnykh dvigatelei tverdogo topliva (Construction and design of solid fuel rocket engines), Moscow, Mashinostroenie, 1987, 324 p.

  8. Chernov V., Gany A. Experimental Investigation of a Pipa- connected Solid Fuel Scramjet in an Are-heatet Facility. 5th European Conference for Aeronautics and Space Sciences (1-5 July 2013; Munich, Germany).

  9. Guy R.W., Rogers R.C., Rock K.E. et al. The NASA Langley Scramjet Test Complex. 32hd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (1-3 July 1996; Lake Buena Vista, Fl). AIAA-96-3243.

  10. Duncan J.C. Heat Exchanger Design Considerations for Transonic Wind Tunnels. 20th AIAA Advanced Measurement and Ground Testing Technology Conference (15-18 June 1998; Albuquerque, NM, USA). AIAA-98-2617. DOI: 10.2514/6.1998-2617

  11. Volkov K.N., Denisikhin S.V., Emel’yanov V.N. Simulation of internal dynamics of solid-fuel rocket engines on the basis of the STAR-CD suite. Journal of Engineering Physics and Thermophysics, 2006, vol. 79, pp. 678-684. DOI: 10.1007/ s10891-006-0153-7

  12. Dulepov N.P., Kotenkov G.K., Yanovskii L.S. Pryamotochnye vozdushno-reaktivnye dvigateli na tverdykh toplivakh (Ramjet engines on solid fuels), Moscow, TsIAM im. P.I. Baranova, 1999, 26 p.
  13. Stufflebeam J.H., Eckibreth A.C. CARS Diagnostics for Solid Propellant Combustion Investigations. Combustion Science and Technology, 1989, vol. 66, no. 4-6, pp. 163-179. DOI: 10.1080/00102208908947147

  14. Vintskii A.M., Volkov V.T., Volkovitskii I.G., Kholodilov S.V. Konstruktsiya i otrabotka RDTT (Design and development of the RTTT), Moscow, Mashinostroenie, 1980, 231 p.

  15. Lebedev A.A., Chernobrovkin L.S. Dinamika poleta bespilotnykh letatel’nykh apparatov (Flight dynamics of unmanned aerial vehicles), Moscow, Mashinostroenie, 1973, 616 p.

  16. Grushchanskii V.A., Kobko G.G. Ballisticheskoe proektirovanie dvukhsrednykh apparatov (Ballistic design of two-medium vehicles), Moscow, MAI -PRINT, 2009, 107 p.

  17. Balyk V.M., Leonov A.G., Mokretsova O.V. et al. Obshchee proektirovanie dvukhsrednykh letatel’nykh apparatov (General design of two-medium aircraft), Moscow, MAI, 2020, 320 p.

  18. Tarasov E.V., Grumondz V. T., Yakovlev G.A. Raketogidrodinamika (Rocket Hydrodynamics), Moscow, MAI, 1985, 270 p.

  19. Aleksandrov V.N. Integral’nye pryamotochnye vozdushnoreaktivnye dvigateli na tverdykh toplivakh. Osnovy teorii i rascheta (Integral direct-flow air-jet engines on solid fuels. Fundamentals of theory and calculation), Moscow, Akademkniga, 2006, 343 p.

  20. Petrenko V.I., Sokolovskii M.I., Zykov G.A. et al. Upravlyaemye energeticheskie ustanovki na tverdom raketnom toplive (Controlled power plants on solid rocket fuel), Moscow, Mashinostroenie, 2003, 463 p.

  21. Balyk V.M. Statisticheskii sintez proektnykh reshenii pri razrabotke slozhnykh system (Statistical synthesis of design solutions in the development of complex systems), Moscow, MAI, 2011, 278 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI