Aspects of semipregs impregnation in aircraft parts production

Aeronautical and Space-Rocket Engineering


Аuthors

Fedyaev V. L.1*, Khaliulin V. I.2**, Sidorov I. N.2***, Gimadiev R. S.3****

1. Institute of Mechanics and Engineering - Subdivision of the Federal State Budgetary Institution of Science “Kazan Scientific Center of the Russian Academy of Sciences” , Kazan, Republic of Tatarstan, Russia
2. Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia
3. Kazan State Power-Engineering University, KSPEU, 51, Krasnoselskaja str., Kazan, Republic of Tatarstan, 420059, Russia

*e-mail: vlfed2020@gmail.com
**e-mail: pla.kai@mail.ru
***e-mail: insidorov1955@mail.ru
****e-mail: gimadievr@mail.ru

Abstract

The authors consider the issues of obtaining composite materials, widely applied in aircraft building, by the vacuum molding method. Special attention is paid to the stage of semi-preg stack impregnation by the polymer binding material melt. The processes of filtration impregnation and capillary impregnation are being distinguished while its realization process. On the assumption that the semi-preg stack is being horizontally set, mathematical modeling of the reinforcing fabric filler filtration impregnation under the impact of pressure difference in the vertical direction and gravity with account for the filler carcass damping is being performed. Provided that the reinforcement material does not swell or shrink, and discontinuity deficiency, the super capillary pores filling by the binding melt is quite rapid, and the upper, intermediate and lower semi-pregs are being distinguished. It is assumed in its turn that while the binding melt flowing in the vapor space of the filler it represents an uncompressing viscous uniform liquid, which viscosity and density do not change while the filtration process, and the melt flow is laminar and isothermal. As the result of the generalized Darcy filtration law integrating, an expression for the filtration speed of the melt in the filler layer and its full impregnation time were obtained. The article demonstrates that the time of the filtration impregnation can be reduced, and the productivity at this stage of production can be correspondingly increased. It can be achieved in the first place by the pressure drop increasing at the filler layer thickness, additional loading action on the semi-pregs stack surface and the melt viscosity reduction due to both temperature and density increase, as well as super-capillary porosity enhancing of the filler. The set regularities represent the possibility of rational technological modes selection for woven composite materials obtaining by the vacuum molding method.

Keywords:

woven composite materials, vacuum forming method, semi-pregs, polymer binder melt, mathematical modeling of filtration impregnation

References

  1. Arafath A.R.A., Fernlund G., Poursartip A. Gas transport in prepregs: Model and permeability experiments. 17th International Conference on Composite Materials (27-31 July 2009; Edinburgh, UK).

  2. Centea T., Hubert P. Measuring the impregnation of an out-of-autoclave prepreg by micro-CT. Composites Science and Technology, 2011, vol. 71, no. 5, pp. 593-599. DOI: 10.1016/j.compscitech.2010.12.009

  3. Furukawa Y., Furuta T., Chiba T. et al. Semipreg, prepreg, resin composite materials, and production methods thereof. Patent US 2020/0148846 A1, 14.03.2020

  4. Cender T., Simacek P., Advani S.G. Resin film impregnation in fabric prepregs with dual length scale permeability. Composites Part A: Applied Science and Manufacturing, 2013, vol. 53, pp. 118-128. DOI: 10.1016/j.compositesa.2013.05.013

  5. Dzhogan O.M., Kostenko O.P. Voprosy proektirovaniya I proizvodstva konstruktsii letatel’nykh apparatov, 2012, no. 1, pp. 80-92.

  6. Dzhogan O.M., Kostenko O.P. Voprosy proektirovaniya i proizvodstva konstruktsii letatel’nykh apparatov, 2011, no. 4, pp. 111-125.

  7. Belov O.A., Berdnikova N.A., Babkin A.V. et al. Composite shape-generating tool set for spacecraft antennae reflector manufacturing. Aerospace MAI Journal, 2017, vol. 24, no. 2, pp. 115-122.

  8. Vorobey V.V., Loginov V.E. A modern approach to composite material structures design. Aerospace MAI Journal, 2002, vol. 9, no. 1, pp. 66-72.

  9. Dushin M.I., Chursova L.V., Khrul’kov A.V., Kogan D.I. Voprosy materialovedeniya, 2013, no. 3(75), pp. 33-40.

  10. Bodunov N.M., Khaliulin V.I., Sidorov I.N., Kostin V.A. On preform impregnation process simulation while transfer molding of composite products. Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 233-245. DOI: 10.34759/vst-2020-1-233-245

  11. Bernardon E., Foley M.F. Disposable self contained cartridge or resin transfer molding and resin transfer molding method. Patent US 5322665 A, 21.02.1994.

  12. Palmer R.J., Moore W.E. Resin impregnation process for producing a resin-fiber composite. Patent US 5281388 A, 25.01.1994.

  13. Hindersmann A. Confusion about infusion: An overview of infusion processes. Composites Part A: Applied Science and Manufacturing, 2019, vol. 126, no. 6 :105583. DOI: 10.1016/j.compositesa.2019.105583

  14. Caldwell J.D. Mandrel-assisted resin transfer molding process employing resin outflow perimeter channel between male and female mold elements. Patent US 6929770 B2, 16.08.2005.

  15. Alifanov O.M., Cherepanov V.V. Identification of physical properties for highly porous fibrous material by means of statistical modeling techniques. Aerospace MAI Journal, 2008, vol. 15, no. 5, pp. 109-117.

  16. Tanaka T., Nakamura T., Hiraishi Y. et al. Resin integrated f iber sheet for vacuum forming, and formed body production method using same. Patent WO/2021/095626, 16.07.2021.

  17. Dang C., Bernetich K., Carter E., Butler G. Mechanical comparison of out-of-autoclave prepreg part to conventional autoclave prepreg part. 67th Annual Forum of the American Helicopter Society (3-5 May 2011; Virginia Beach, VA). Vol. 3, pp. 1900-1910.

  18. Préau M. Defect management in vacuum bag only semipreg processing of co-bonded composite repairs. A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy, Montréal, Québec, Canada, 2016, 226 p.

  19. Louis B.M. Gas transport in out-of-autoclave prepreg laminates. A thesis submitted in partial fulfillment of the requirements of the degree of Master of Applied Science. 2010, 143 p. DOI: 10.14288/1.0071143

  20. Centea T., Hubert P. Modelling the effect of material properties and process parameters on tow impregnation in out-of-autoclave prepregs. Composites Part A: Applied Science and Manufacturing, 2012, vol. 43, no. 9, pp. 1505-1513. DOI: 10.1016/j.compositesa.2012.03.028

  21. Thorfinnson B., Biermann T.F. Production of void free composite parts without debulking. International SAMPE Symposium and Exhibition, 1986, vol. 31, pp. 480-490

  22. Zeinstra M., ten Thije R.H.W., Warnet L. Low velocity impact on a single-ply aramid semipreg. International Journal of Material Forming, 2009, vol. 2, suppl 1, pp. 193-196. DOI: 10.1007/s12289-009-0653-z

  23. Dushin M.I., Donetskii K.I., Timoshkov P.N., Karavaev R.Yu. Trudy VIAM, 2018, no. 9(69), pp. 21-31.

  24. Dushin M.I., Donetskii K.I., Timoshkov P.N., Karavaev R.Yu. Trudy VIAM. Polimernye materialy, 2018, no. 9(69), pp. 21-31. DOI: 10.18577/2307-6046-2018-0-9-21-31

  25. Ekause O.A., Anjum N., Eze V.O., Okoli O.I. A Review on the Out-of-Autoclave Process for Composite Manufacturing. Composite Science, 2022, vol. 6, no. 6: 172. DOI: 10.3390/jcs6060172

  26. Muskat M. The Flow of Homogeneous Fluids Through Porous Media. Michigan, I.W.Edwards & Arbor, 1946, 792 p.

  27. Skardino F., Khirl Dzh., Kavabata S. et al. Tkanye konstruktsionnye kompozity (Woven structural kompozity), Moscow, Mir, 1991, 430 p.

  28. Kalinchev V.A., Makarov M.S. Namotannye stekloplastiki (Wound fiberglass), Moscow, Khimiya, 1986, 268 p.

  29. Aksel’rud G.A., Lysyanskii V.M. Ekstragirovanie: sistema tverdoe telo – zhidkost’ (Extraction: solid–liquid system), Leningrad, Khimiya, 1974, 256 p.

  30. Taganov I.P. Modelirovanie protsessov masso- i energoperenosa. Nelineinye sistemy (Modeling of mass and energy transfer processes. Nonlinear systems), Leningrad, Khimiya, 1979, 208 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI