The study of rotation frequency of the GTE ceramic segmental bearing internal ring impact on its strength

Aeronautical and Space-Rocket Engineering


Аuthors

Semenova A. S.*, Kuz’min M. V.**, Kirsanov A. R.***

Lyulka Experimental Design Bureau, branch of the United Engine Corporation – Ufa Engine Industrial Association, 13, Kasatkina str., Moscow, 129301, Russia

*e-mail: anna.semenova.lulka@gmail.com
**e-mail: maxim.kuzmin@okb.umpo.ru
***e-mail: kar3112@yandex.ru

Abstract

Metal rolling bearing are employed traditionally in rotor supports. These bearings disadvantages are high friction coefficient, limited rotation frequency and their susceptibility to the severe wear.

Implementation of new technologies and materials enabled application of ceramic bearings. These bearings advantage over the metal ones consists in:

– low adhesion of mating parts, low friction coefficient;

– non-magnetic properties, high operating temperature;

– chemical resistance in aggressive environments, high strength.

Traditionally, the performance check of such bearings are the tests, which require heavy economic and time spending that may be reduced by numerical simulation with modern software packages.

Numerical computation of ceramics strength characteristics of represents a problem, since it is associated with the need to build an adequate micro-cracks propagation model in inhomogeneous structures.

This article presents a model of Johnson-Holmquist (J-H) ceramics deformation and fracture, which allows estimating a micro-fracture, as well as the time and place of cracks initiation.

The fracture mathematical modeling in the J-H model is based on introduction of the fracture parameter (D), defining the degree of material continuity loss, as well as equations describing the D parameter changes in the loaded material. The fracture parameter growth is associated with deformations accumulation.

Simulation of several options of the internal ring corresponding to the real structures (conventional ring and a ring with a slit) by the finite element method was performed for the technique for the bearing strength estimation try-out. The model was being loaded by the centrifugal force in time, applied linearly, from zero to full destruction. The ceramic ring material was Carboprom-K. The properties of the analog, namely silicon carbide, were employed for the damages analysis.

Keywords:

plain bearings, silicon carbide, plasticity damage model, Johnson Holmquist model, ceramics destruction criterion

References

  1. LS-DYNA Keyword User’s Manual (Version 971). Livermore Software Technology Corporation (LSTC), California, 2007, vol. 1, 1384 p.

  2. Cronin D.S., Bui K., Kaufmann C. et al. Implementation and Validation of the Johnson-Holmquist Ceramic Material Model in LS-Dyna. 2003.

  3. Parshikov A.N. Chislennyi metod SPH, ispol’zuyushchii sootnosheniya raspada razryvov, i ego primenenie v mekhanike deformiruemykh geterogennykh sred (Numerical method of SPH, using the relations of decay of discontinuities, and its application in the mechanics of deformable heterogeneous media). Doctor’s thesis, Moscow, Institut problem mekhaniki RAN, 2014. – 122 p.

  4. Avgustovich V.G., Shmotin Yu.N., Sipatov A.M. et al. Chislennoe modelirovanie nestatsionarnykh yavlenii v gazoturbinnykh dvigatelyakh (Numerical simulation of unsteady phenomena in gas turbine engines), Moscow, Mashinostroenie, 2005, 523 p.

  5. Zubko A. I., Lukin V. A., German G. K. Development of measures for resisting forces reduction while roller bearings operation. Aerospace MAI Journal, 2022, vol. 29, no. 4, pp. 125-137. DOI: 10.34759/vst-2022-4-125-137

  6. Kogaev V.P., Makhutov N.A., Gusenkov A.P. Raschety detalei mashin i konstruktsii na prochnost’ i dolgovechnost’ (Calculations of machine parts and structures for strength and durability), Moscow, Mashinostroenie, 1985, 223 p.

  7. Birger I.A., Shorr B.F., Iosilevich G.B. Raschet na prochnost’ detalei mashin. Spravochnik (Strength calculation of machine parts. Handbook), Moscow, Mashinostroenie, 1993, 639 p.

  8. Zubko A.I., Gnusin P.I., Kritskii V.Yu., Netsvet V.A. Nasosy. Turbiny. Sistemy, 2020, no. 4(37), pp. 42-55.

  9. Gurson A.L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I–Yield Criteria and Flow Rules for Porous Ductile Media. Journal of Engineering Materials and Technology, 1977, vol. 99, no. 1, pp. 2–15. DOI: 10.1115/1.3443401

  10. Nadai A. Theory of flow and fracture of solids. McGraw-Hill Book Co.; 2nd ed., 1950, vol. 1, 572 p.

  11. Zubko A.I., Aksenov S.P., Netsvet V.A., Didenko A.V. Radiotekhnika, 2019, vol. 83, no. 5-2, pp. 106 – 109.

  12. Morozov E.M., Nikishkov G.P. Metod konechnykh elementov v mekhanike razrusheniya (Finite element method in fracture mechanics). 2nd ed. Moscow, URSS, 2008, 254 p.

  13. Semenova A.S., Gogaev G.P. Evaluation of destructive rotation frequency of turbo-machine disks applying deformation criterion with LS-DYNA software. Aerospace MAI Journal, 2018, vol. 25, no 3, pp. 134-142.

  14. Semenova A.S., Kuz’min M.V. Finite element grid discreteness selecting for rotating parts of inter-rotor bearing of a gas turbine engine considering surface roughness. Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 171-179. DOI: 10.34759/vst-2020-1-171-179

  15. Leontiev M., Ivannikov V., Degtyarev S. Radial roll bearings with flexible rings: application to rotor dynamics and extension to multibody simulation. 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (16-21 December 2017; Maui, Hawaii).

  16. Stepanov A.V. Modelirovanie zhestkosti sherokhovatykh poverkhnostei pri otsenke tochnosti tekhnologicheskogo oborudovaniya (Modeling rough surfaces stiffness in assessing technological equipment accuracy), Abstract of doctor’s thesis, Moscow, Moskovskii gosudarstvennyi tekhnologicheskii universitet, 1998, 15 p.

  17. Petrov N.I., Nikolaev S.M. Novye tekhnologicheskie protsessy i nadezhnost’ GTD: nauchno-tekhnicheskii sbornik. Vypusk Podshipniki i uplotneniya (New technological processes and reliability of gas turbine engine: scientific and technical collection. Issue 9. Bearings and seals), Moscow, TsIAM, 2013, pp. 13-22.

  18. Kikot’ N.V., Snetkova E.I., Leont’ev M.K., Degtyarev S.A. Vestnik Rybinskoi gosudarstvennoi aviatsionnoi tekhnologicheskoi akademii im. P. A. Solov’eva, 2012, no. 2(23), pp. 94-102.

  19. Mason M.A. A practical tool for the determination of surface stresses in railroad bearings with different contact geometries load conditions using finite element analysis. Thesis of Master of Science. Virginia Commonwealth University. 2014, 119 p. DOI: 10.25772/1JJY-3P97

  20. Qu F., Xie H., Jiang Z. Finite element method analysis of surface roughness transfer in micro flexible rolling. 12th International Conference on Numerical Methods in Industrial Forming Processes (4-7 July 2016; Troyes, France). Vol. 8, no. 8: 04002. DOI: 10.1051/ matecconf/20168004002


mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI