Thermostating modes determining at gas-powered propulsion unit orbital functioning

Aeronautical and Space-Rocket Engineering


Аuthors

Pyatykh I. N.1*, Katashov A. V.1**, Sinitsin A. P.1**, Rumyantsev А. V.2***

1. Experimental Design Bureau “Fakel”, 181, Moskovsky av, Kaliningrad, 236001, Russia
2. Immanuel Kant Baltic Federal University, IKBFU, 14, A. Nevskogo str., Kaliningrad, 236041, Russia

*e-mail: phantom4400@yandex.ru
**e-mail: info@fakel-russia.com
***e-mail: albert37@list.ru

Abstract

The world leading aerospace industry organizations show interest in developing and upgrading the ultra-low- power engines, characterized by the power less than 100 W, for the small spacecraft (SC) including the CubeSat format spacecraft. This interest can be explained by the possibility of obtaining new knowledge and deriving of commercial profit while the small-size SC, equipped with propulsion units with high values of the total burn, for orbital maneuvers performing. The projects of commercial companies, aspiring covering the low-orbit space around the Earth by the information transmission systems, which represent orbital groups of the small SCs, constituting formation and jointly performing the flight task, so-called satellite constellations, may be adduced as an example of the considered interest.

Application of the small spacecraft of the CubeSat format may lead in the future to the change of the basic approach to the Solar system exploration due to the high ratio of the obtained scientific knowledge to the financial costs. Thus, the growing interest of the world market in the movement control systems for the small SC is being observed, which is proved out by the presence of scientific works and publications. Nonetheless, according to the «World’s Largest Database of Nanosatellites» European database information, more than 1300 nano-satellites were manufactured by the middle of 2020 (including the SC of the CubeSat format), and only 5% if the small SC from this number had a propulsion unit as their part.

Propulsion units for nanosatellites of the CubeSat format can be formed both on an electric rocket engine (ERE) and on a gas-powered engine (GPEU), which has a minimum volume and mass, which, in its turn, complicates the extra thermostating system placing on it.

The article describes the technique and stages of the GPEU thermal design, and adduces its thermal mathematical model, consisted of detailed thermal models of all the constituent elements of the installation, placed on the spacecraft frame, around, around which the screens with photocells of the solar battery are placed.

The article presents the results of developing and employing the thermal model of a nanosatellite with gas propulsion system of orbital operation. The said model was used for the temperature field computing, internal and external conductive and radiative heat fluxes determining. It allows as well determine gradients and rates of temperature change in stationary and dynamic operation modes with subsequent recommendations on improve the nanosatellite thermal design and reliability.

The results of thermal computations on determining temperature ranges and thermal fluxes among the GPEU elements for the considered options of its placing on the SC frame at the extreme combination of thermal loads and thermal conditions of the GPEU application set for the thermal computations are presented. The authors gave recommendations on the thermostating system improvement.

Keywords:

nano-satellite, gas-powered propulsion unit, electrothermal engine, thermal model, Thermica application program package, heat transfer in space

References

  1. Prokhorenko I.S., Katashov A.V., Katashova M.I. Gas propulsion correcting unit for nanosatellites. Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 152-165. DOI: 10.34759/ vst-2021-2-152-165

  2. Vasil’ev V.V., Morozov N.G. Kompozitnye ballony davleniya: proektirovanie, raschet, izgotovlenie i ispytaniya (Composite pressure cylinders: design, calculation, manufacturing and testing), Moscow, Mashinostroenie; Innovatsionnoe mashinostroenie, 2015, 373 p.

  3. Chubov P.N., Saevets P.A., Rumyantsev A.V. Thermal calculation of the SPT-50 stationary plasma thruster. Aerospace MAI Journal, 2017, vol. 24, no. 4, pp. 70-79.

  4. Aksamentov V.A., Bednov S.M., Zaletaev S.V. et al. Rukovodstvo dlya konstruktorov po obespecheniyu teplovykh rezhimov kosmicheskikh apparatov (Designers guide on spacecraft thermal conditions ensuring), Kaliningrad, GONTI, 1992, 131 p.

  5. Malozemov V.V., Kuryavtseva N.S. Optimizatsiya sistem termoregulirovaniya kosmicheskikh apparatov (Optimization of spacecraft thermal control systems), Moscow, Mashinostroenie, 1988, 108 p.

  6. Borschev N.O., Belyavsky A.E., Antonov V.A. Analysis of the systems for ensuring thermal regimes of domestic spacecraft. Engineering Journal: Science and Innovation, 2022, no. 7(127). DOI: 10.18698/2 308-6033-2022-7-219

  7. Malozem ov V. V., Ku dr yavts eva N.S. Sistemy termoregulirovaniya kosmicheskikh apparatov (Systems of spacecraft thermal regulation), Moscow, Mashinostroenie, 1995, p. 12.

  8. Atamasov V.D., Romanov A.V. Sistemy obespecheniya teplovykh rezhimov germetichnykh otsekov i YaEU kosmicheskikh apparatov (Systems for thermal conditions ensuring of spacecraft sealed compartments and nuclear power plants), St. Petersburg, Professional, 2014, 248 p.

  9. Tsaplin S.V., Bolychev S.A., Romanov A.E. Teploobmen v kosmose (Heat transfer in space), Samara, Samarskii universitet, 2018, 92 p.

  10. Blokh A.G., Zhuravlev Yu.A., Ryzhkov L.N. Teploobmen izlucheniem (Heat exchange by radiation), Moscow, Energoatomizdat, 1991, pp. 10-50 (432 p.).

  11. Favorskii O.N., Kadaner Ya.S. Voprosy teploobmena v kosmose (Issues of heat exchange in space), Moscow, Vysshaya shkola, 1967, pp. 68-73.

  12. Kuznetsov V.D. Kosmicheskaya tekhnika i tekhnologii, 2014, no. 3(6), pp. 3-13.

  13. Sklyarov Yu.A., Fomina N.V., Kotuma A.I., Semenova N.V. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Nauki o Zemle, 2009, vol. 9, no. 1, pp. 44-55.

  14. Levantovskii V.I. Mekhanika kosmicheskogo poleta v elementarnom izlozhenii (Space f light mechanics in an elementary narration), 3rd ed. Moscow, Nauka, 1980, 511 p.

  15. Gumenyuk A. CADmaster, 2014, no. 2(75), pp. 50-58.

  16. Novikov L.S. Kosmicheskoe materialovedenie, Moscow, MAKS Press, 2014, 447 p.

  17. Kovalev A.I. (ed.) Teplofizicheskie svoistva aviatsionnykh materialov. Ch. 1: Metally i splavy (Thermophysical properties of aviation materials. Part 1. Metals and alloys), Moscow, ONTI, 1966, 138 p.

  18. Ryabov Yu.A. Dvizhenie nebesnykh tel (Motion of celestial bodies), 4th ed. Moscow, Nauka, 1988, 240 p.

  19. Anfimov N.A., Al’tov V.V., Zaletaev S.V., Kopyatkevich P.M. Konversiya v mashinostroenii, 2007, no. 1, pp. 19-23.

  20. Knunyants I.L., Fokin A.V. Pokorenie nepristupnogo elementa (Conquest of the impregnable element), Moscow, AN SSSR, 1963, 193 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI