Numerical modeling of the flow coefficient gas-dynamic component of annular nozzles with straight critical section

Aeronautical and Space-Rocket Engineering


Аuthors

Sabirzyanov A. N.*, Akhmetzyanov A. S.**, Konovalov R. D.***

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: ansabirzyanov@kai.ru
**e-mail: Artur_Hunter@mail.ru
***e-mail: konrus2019@yandex.ru

Abstract

Annular nozzles are competitive with traditional central nozzles in a number of characteristics. This is stipulated by the presence of a central body, which determines the required flow structure during supersonic expansion. In the narrowing section of the nozzle, the central body contributes to the friction losses increase, and its geometric characteristics will determine the uneven flow parameters distribution and total pressure losses up to the critical section. The authors conducted numerical studies of the central body shape and of inlet section geometric parameters impact on the gas-dynamic component of the flow coefficient of an annular nozzle with a direct critical section.

The outflow processes simulation was performed with the ANSYS Fluent software within the framework of the axisymmetric approximation in the adiabatic formulation of the quasi-stationary problem, assuming that the structural supports that secure the central body do not significantly change the flow coefficient. The approach based on solving the Reynolds-averaged Navier–Stokes equations closed by the k–w SST turbulence model widely used in engineering calculations with a typical set of model constants was employed. A homogeneous gas was considered as a working fluid.

The simulation results revealed that the flow coefficient gas-dynamic component of the annular nozzles with a straight critical section can be comparable to the value of traditional central nozzles, and exceed it for certain geometric parameters of the central body, which is stipulated by more uniform distribution of parameters in the critical section. A linear dependence of the washed area increase of the central body with its ellipsoidity increase, and a nonlinear nature of the change in the total values of the friction stresses with an extremum for the spherical shape of the central body are shown. The most optimal shape of the central body is a spherical one.

The flow coefficient of annular nozzles with a straight critical section depends significantly on the conjoint distribution of the central body geometric parameters and the outer contour of the narrowing section. With the optimal shape of the central body, and the ratio of central body diameter to the outer contour diameter in the minimum nozzle cross-section of the order of 0.7, the flow coefficient gas dynamic component acquires maximum value, exceeding this value of the conventional central nozzle by 0.3%.

In contrast to the flow coefficient of conventional central nozzles, the flow coefficient of the annular nozzles increases with pressure increasing in the combustion chamber.

Keywords:

annular nozzle, gas dynamic losses, flow coefficient, computational fluid dynamics, flow parameters distribution over the nozzle

References

  1. Gubertov A.M., Mironov V.V., Borisov D.M. et al. Gazodinamicheskie i teplofizicheskie protsessy v raketnykh dvigatelyakh tverdogo topliva (Gas-dynamic and thermophysical processes in solid rocket propulsion), Moscow, Mashinostroenie, 2004, 512 p.

  2. Dobrovol’skii M.V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya (Liquid propellant rocket engines. Design basics), Moscow, MGTU im. N.E. Baumana, 2005, 488 p.

  3. Vinitskii A.M., Volkov V.T., Volkovitskii I.G., Kholodilov S.V. Konstruktsiya i otrabotka RDTT (Design and development of Solid Propellant Rocket Engines), Moscow, Mashinostroenie, 1980, 230 p.

  4. Kraiko A.N., Tillyaeva N.I. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2007, no. 2, pp. 194−203.

  5. Gorokhov V.D. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2009, vol. 5, no. 1, pp. 114-119.

  6. Markov V.V., Gromov V.G., Afonina N.E. et al. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 4(3), pp. 971–973.

  7. Kartasheva M.A. Vestnik YuUrGU. Mashinostroenie, 2012, no. 33(292), pp. 40-46.

  8. Vaulin S.D., Kartasheva M.A. Vestnik OGU, 2014, no. 9(170), pp. 91-95.

  9. Ko s ovyagin K.V., Skom orokh ov G.I. Vestnik Voronezhskogo Ggosudarstvennogo tekhnicheskogo universiteta, 2019, vol. 15, no. 1, pp. 100-106. DOI: 10.25987/VSTU.2019.15.1.015

  10. Vaulin S.D., Khazhiakhmetov K.I. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2021, no. 10(739), pp. 74–83. DOI: 10.18698/0536-1044-2021-10-74-83

  11. Volkov K.N., Emel’yanov V.N. Gazovye techeniya s massopodvodom v kanalakh i traktakh energoustanovok (Gas f lows with mass supply in channels and paths of power plants), Moscow, Fizmatlit, 2011, 464 p.

  12. Kartashev A.L., Kartasheva M.A. Vestnik YuUrGU. Seriya “Mashinostroenie”, 2013, vol. 13, no. 2, pp. 37–46.

  13. Levin V.A., Afonina N.E., Gromov V.G. et al. Teplofizika I aeromekhanika, 2013, vol. 20, no. 3, pp. 269–276.

  14. Sabirzyanov A.N., Glazunov A.I., Kirillova A.N., Titov K.S. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2018, no. 2, pp. 105-111.

  15. Sabirzyanov A.N., Kirillova A.N. Vestnik Kontserna VKO “Almaz – Antei”, 2018, no. 1, pp. 43–50. DOI: 10.38013/2542-0542-2018-1-43-50

  16. Sabirzyanov A.N., Kirillova A.N., Khamatnurova C.B. Geometrical parameters effect of recessed nozzle inlet section on the flow coefficient. Aerospace MAI Journal, 2020, vol. 27, no. 2, pp. 140-148. DOI: 10.34759/vst-2020- 2-140-148

  17. Kirillova A.N., Sabirzyanov A.N. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2021, no. 2, pp. 129-135.

  18. Shishkov A.A., Panin S.D., Rumyantsev B.V. Rabochie protsessy v raketnykh dvigatelyakh tverdogo topliva (Working processes in solid rocket motors), Moscow, Mashinostroenie, 1988, 240 p.

  19. Pirumov U.G., Roslyakov G.S. Gazovaya dinamika sopel (Gas dynamics of nozzles), Moscow, Nauka. Fizmatlit, 1990, 368 p.

  20. Milekhin Yu.M., Klyuchnikov A.N., Burskii G.V., Lavrov G.S. Energetika raketnykh dvigatelei na tverdom toplive (Solid fuel rocket energy), Moscow, Nauka, 2013, 207 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI