Computational study of a hybrid cryogenic power plant for the UAV with heat supply from the internal combustion engine

Aeronautical and Space-Rocket Engineering


Аuthors

Tremkina O. V.*, Adenane H. **, Shikhalev V. .***, Uglanov D. A.****

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: tereshchenko.ov@ssau.ru
**e-mail: hamzaadenane93@gmail.com
***e-mail: shikhalev.vi@ssau.ru
****e-mail: dmitry.uglanov@mail.ru

Abstract

The presented article describes a computational study of a modernized hybrid cryogenic power plant. Liquid nitrogen was selected as the working fluid of the cryogenic installation. The schematic diagram of a hybrid cryogenic power plant consists of an internal combustion engine (ICE) and a cryogenic plant (CP); the heat source is liquid antifreeze, which collects the heat from the internal combustion engine and delivers it to the liquid nitrogen.

The installation principle of operation consists in the following. The cryogenic working fluid (liquid nitrogen) from the tank enters the heater through the cryogenic pump, where nitrogen obtains thermal energy from antifreeze. The antifreeze, in its turn, is the coolant for the ICE. From the heat exchanger gaseous nitrogen enters the piston expander, where the polytropic process emanates. The resulting work is transferred to the screw actuator.

The cryogenic power plant operates according to the open Rankine cycle. The open circuit of the power plant, which employs the low-potential heat of liquefied nitrogen, is quite simple and economical. Both nitrogen and air, liquefied natural gas, etc. can be employed as a working fluid.

The Rankine cycle was constructed in T-S coordinates (temperature-entropy coordinates) of nitrogen with the Coolpack application software package [15]. Thermodynamic parameters of the basic points were computed employing an algorithm for conducting a computational study of the hybrid cryogenic power plant parameters [14, 18].

The working body is being heated in the heat exchanger-evaporator to the temperature of the upper heat source [19]. Technical specification indicates that the flight altitude of the unmanned aerial vehicle (UAV) is 2000 m, and the temperature of the hot coolant is 363 K [14]. Computational study of the UAV aerodynamic characteristics revealed that required power would be 15 kW at the cruising flight.

The results of the computational study demonstrated the necessity of both temperature and pressure increasing at the piston expander inlet for the hybrid cryogenic power plant efficiency enhancing. Temperature increasing up to 363 K may be achieved through employing the heat removed from the ICE, employing liquid cooling system. It will allow reducing the cryogenic working body consumption to 0.053 kg/s while ensuring the power output of the UAV power plant at the level of 15 kW.

Keywords:

hybrid cryogenic power plant, cryogenic working fluid, liquid heating, unmanned aerial vehicle, carbon trace

References

  1. Uglanov D.A., Tremkina O.V., Adenan Kh. Teplovye protsessy v tekhnike, 2022, vol. 14, no. 6, pp. 255-260.

  2. Karimov A.Kh. Trudy MAI, 2011, no. 47. URL: https://trudymai.ru/eng/published.php?ID=26767

  3. Prosvirina N.V. Moskovskii ekonomicheskii zhurnal, 2021, no. 10. URL: https://qje.su/ekonomicheskaya-teoriya/moskovskij-ekonomicheskij-zhurnal-10-2021-41/

  4. Shatalov N.V. Perspektivy razvitiya informatsionnykh tekhnologii, 2016, no. 29, pp. 34-39.

  5. Zinenkov Yu.V., Lukovnikov A.V. The concept of pluridisciplinary forming of precursory technical appearance of military purpose unmanned aerial vehicles. Aerospace MAI Journal, 2022, vol. 29, no. 3, pp. 94-110. DOI: 10.34759/ vst-2022-3-94-110

  6. Lim Y., Al–Atabi M., Williams R.A. Liquid air as an Energy Storage: a review. Journal of Engineering Science and Technology, 2016, vol. 11, no. 4, pp. 496-515

  7. Tereshchenko O.V. Materialy Studencheskoi nauchno-tekhnicheskoi konferentsii “Lukachevskie chteniya – 2017”, Samara, Samarskii universitet, 2017, pp. 7-12.

  8. Zaika A.V., Tereshchenko O.V. Materialy Studencheskoi nauchno-tekhnicheskoi konferentsii “Lukachevskie chteniya – 2017”, Samara, Samarskii universitet, 2017, pp. 57-62.

  9. Shimanov A.A., Uglanov D.A., Shimanova A.B. et al. Vestnik mezhdunarodnoi akademii kholoda, 2018, no. 3(68), pp. 37-44.

  10. Owen N. The Dearman engine – liquid air for transport cooling. Engage, 2016.

  11. Knowlen C., Williams J.E., Mattick A.T. et al. Quasi- Isothermal Expansion Engines for Liquid Nitrogen Automotive Propulsion. SAE Future Transportation Technology Conference and Exposition. 1997. DOI: 10.4271/972649

  12. Tremkina O.V., Adenan Kh., Pulatov T.N. et al. Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Problemy i perspektivy razvitiya dvigatelestroeniya” (23–25 June 2021; Samara). Samara, Samarskii universitet, 2021, vol. 2, pp. 207-208.

  13. Dovgyallo A.I., Uglanov D.A., Tsapkova A.B. et al. Vestnik Mezhdunarodnoi akademii kholoda, 2014, no. 3(52), pp. 30-34.

  14. Arkharov A.M., Belyakov V.P., Mikulin E.I. et al. Kriogennye sistemy: osnovy proektirovaniya apparatov i ustanovok (Cryogenic systems: fundamentals of designing apparatuses and installations), Moscow, Mashinostroenie, 1987, 534 p.

  15. Tremkina O.V., Uglanov D.A., Urlapkin V.V. et al. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2021, vol. 20, no. 4, pp. 59-68. DOI: 10.18287/2541-7533-2021-20-4-59-68

  16. Software CoolPack v1.50. – IPU & Department of Mechanical Engineering Technical University of Denmark, 2012. URL: https://www.ipu.dk/products/coolpack/

  17. Vargaftik N.B. Spravochnik po teplofisicheskim svoistvam gasov I zhidkostei (Handbook of Thermophysical properties of gases and liquids), 2nd ed. Moscow, Nauka, 1972, 720 p.

  18. Leachman J.W., Jacobsen R.T., Lemmon E.W., Penoncello S.G. Thermodinamic properties of Cryogenic Fluids. International cryogenic monograph series, 1997, 213 p. DOI: 10.1007/978-3-319-57835-4

  19. Kirillin V.A., Sychev V.V., Sheindlin A.E. Tekhnicheskaya termodinamika (Technical thermodynamics), Moscow, Energoatomizdat, 1983, 409 p.

  20. Isachenko V.P., Osipova V.A., Sukomel V.S. Teploperedacha (Heat transfer), 3rd ed., Moscow, Energiya, 1975, 488 p.

  21. Utilizatsiya batarei elektromobilei: problemy i perspektivy v mire, 2021. URL: https://e-cars.tech/zakony-pro-elektromobili/utilizatsiya-batarey-elektromobiley-problemy-i-perspekt... v-mire/

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI