Specifics of the aircraft power plant inlet device shape effect on the induced vortexes intensity

Aeronautical and Space-Rocket Engineering


Аuthors

Aisin A. K.*, Achekin A. A., Preis A. A.

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: aisin_alex@mail.ru

Abstract

The aircraft power plant operation on the ground is associated with the intense vortices forming between the inlet device and the airfield surface. This factor affects negatively the power plant operability. It reduces gas-dynamic stability margin of the engine and creates favorable conditions for the foreign objects suction into the air intake.
The vortex formation mechanism has been studied in sufficient detail. Initially, the vortex intensity depends on the operating parameters and layout of the inlet device. Significant parameters, affecting the vortex intensity are the airflow, diameter, height above the surface, bevel angle, layout, and feeding windows availability.

However, the degree of geometric shape effect of the inlet device has not been sufficiently studied, although initially it namely is that determines the vortex intensity potential for a particular power plant.
The first stage of experimental studies of the inlet device geometry impact on the intensity of the vortex induced by it was determining for the following shapes of the inlet sections at different heights:
– square section with a bevel;
– square section without bevel;
– round section;
– semicircular section with a lip up;
– semicircular section with a lip down;
– rhomboid section.
At the second stage, the problem was reduced to studying the ratio of the input device height to the length of its lower (upper) edge AID = A/B for different heights of the input device.
As the result of the research, the following inferences were drawn:
– the entrance section geometry of the inlet device cannot affect the formation vortex intensity under it.
– for the same height of the geometric (energy) center location of the inlet device, the vortex flows of greater intensity are being induced by the inlet device, with a “bevel” and the lower edge located closer to the surface.


Keywords:

experimental studies of the vortex intensity, vortex intensity criterion, maximum horizontal velocity of the wall-adjacent flow, air intake (inlet device) geometric shape, inlet device mounting height, air intake geometric (energy) center, bevel angle of the air intake inlet cross-section, fighter air intake

References

  1. Anisimov K.S. Kombinirovannyi algoritm opredeleniya aerodinamicheskikh kharakteristik s tsel’yu optimizatsii vozdukhozabornikov dozvukovykh letatel’nykh apparatov integral’nykh komponovok (A combined algorithm for determining aerodynamic characteristics in order to optimize the air intakes of subsonic aircraft of integrated layout), Ph.D. thesis. Zhukovskii, TsAGI, 2017, 177 p.

  2. Colehour J., Farquhar B. Inlet vortex. Journal of Aircraft, 1971, no. 8(1), pp. 39-43.

  3. Neskoromnyi E.V., Markov D.S. Nasosy Turbiny. Sistemy, 2018, no. 4(29), pp. 20-31.

  4. Leont’ev M.K., Berne A.L. Aerospace MAI Journal, 1998, vol. 5, no. 2, pp. 26-32.

  5. Kolesinskii L.D. Uchenye zapiski TsAGI, 2014, vol. XLV, no. 3, pp. 64-74.

  6. Pakhomov S.V., Safarbakov A.M., Aisin A.K. Patent RU 2302620 C2, 10.07.2007.

  7. Panov S.Y., Kovalev A.V., Aisin A.K., Achekin A.A. Aircraft air intakes location impact on vortex formation intensity. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 110-119.

  8. Aisin A.K. Vestnik IrGTU, 2006, no. 4(28), pp. 90–91.

  9. Achekin A.A. Vestnik IrGTU, 2006, no. 4(28), pp. 89–90.

  10. Komov A.A. Konstruktsiya i sistemy upravleniya GTD. Sbornik statei. Moscow, VVIA im. prof. N.E. Zhukovskogo, 2001, pp. 35–49.

  11. Aisin A.K., Ryabov M.R. Sovremennoe sostoyanie I perspektivy razvitiya aviatsionnykh kompleksov. Sbornik statei VII Nauchno-prakticheskoi konferentsii kursantov i slushatelei “Molodezhnye chteniya, posvyashchennye pamyati Yu.A. Gagarina”. Voronezh, VUNTs VVS “VVA”, 2020, pp. 189-194.

  12. Danilenko N.V., Kirenchev A.G. Work process of the earth environments vortex formation. Aerospace MAI Journal, 2018, vol. 25, no. 3, pp. 161-170.

  13. Danilenko N.V., Kirenchev A.G. Vortex formation of gravity flows. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 28-36.

  14. Kizim V.Ya., Komov A.A. Materialy Vsesoyuznoi nauchno- tekhnicheskoi konferentsii “Problema zashchity GTD ot povrezhdenii postoronnimi predmetami”, Zhukovskii, LII im. M.M. Gromova, 1978, pp. 32–33.

  15. Besedov N.P. Uchenye zapiski TsAGI, 1975, vol. 6, no. 3, pp. 99-104.

  16. Komov A.A. Nauchnyi vestnik MGTU GA, 2005, no. 90, pp. 123–128.

  17. Slobodkina F.A., Malinin V.V. Materialy X Mezhdunarodnogo kongressa dvigatelestroitelei (13-18 September 2005; Rybachye, Crimea).

  18. Komov A.A. Teoreticheskie osnovy i tekhnicheskie resheniya dlya zashchity aviatsionnykh dvigatelei ot popadaniya tverdykh postoronnikh predmetov s poverkhnosti aerodrome (Theoretical foundations and technical solutions for the protection of aircraft engines from the ingress of solid foreign objects from the surface of the airfield). Ph.D. thesis. Moscow, GosNII GA, 2005, 400 p.

  19. Brix S., Neuwerth G., Jacob D. The inlet-vortex system of jet engines operating near ground. 18th Applied Aerodynamics Conference AIAA (14-17 August 2000; Denver, CO, USA). DOI:10.2514/6.2000-3998

  20. Motycka D., Walter W. An experimental investigation of Ground vortex formation during revers thrust operation. AIAA/ SAE 11th Propalsion conference. 1975. Paper no. 75/1322.

  21. MacManus D.G., Murthy J. A quantitative study of inlet ground vortices. Cranfield University. 2007, рр. 1387-1400.

  22. Pakhomov S.V., Safarbakov A.M. Metody i sredstva zashchity gazoturbinnykh dvigatelei vozdushnykh sudov ot popadaniya postoronnikh predmetov (Methods and means of protecting aircraft gas turbine engines from foreign objects), Irkutsk, IrGUPS, 2011. Part 2, pp. 301–303

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI