A method for aircraft critical characteristics determining based on risk-analysis and project data verification

Aeronautical and Space-Rocket Engineering


Аuthors

Konopleva V. M.*, Skvortsov E. B.**

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: viktoriya.konopleva@tsagi.ru
**e-mail: skvortsov-tsagi@yandex.ru

Abstract

The article reflects the method for critical characteristics determining of the aircraft allowing accounting for the uncertainty presence of a variety of parameters during design procedure while performing analysis and quantitative assessment of technical risk.

The purpose of this method application consists efficiency enhancing in the field of aircraft development. The said method is necessary for the current state of development monitoring, and helps while decision making among variety of different implementation options. In view of the initial design stage specifics methods employed for the aircraft characteristics computing are approximate. Computation of one and the same characteristic by different methods with various assumptions is quite possible, which causes a certain range of possible values. The presented method allows reducing the searched for characteristic uncertainty up to the numerical indicator.

The proposed indicator is the probability of fulfilling one or another item from technical requirements (TR) for the aircraft, and its computing requires the following action sequence:

– an uncertainty model forming, particularly, for a probabilistic model, selecting parameters distribution law and setting intervals of possible values;

– simulation modeling, allowing obtaining a range of possible values for the requirement being analyzed;

– analysis of the simulation modeling results, where the probability of a given TR item fulfilling and basic statistical characteristics are being computed, conclusions are drawn on the stability of the expected value;

– sensitivity analysis, which allows expanding the analyzed requirement understanding, transferring to decomposition by parameters and the critical uncertainty tracking of one or another parameter.

The method was considered on the example of the regional aircraft development. Beta distribution, specified by two parameters of shape and a range of possible values, is employed to form the input data uncertainty model. Simulation modeling was performed with the MATLAB & Simulink package. The integral indicator is the probability of fulfilling the TR in terms of flight range.

The article demonstrates that when flying at a fixed cruising speed, with 5th generation engines, the metric value is 84%. The histogram of the distribution belongs to the type of positively skewed distribution with a shift of the mean value from the center of the range, closer to the left border of the probabilistic values, which characterizes it as unstable. Sensitivity analysis confirmed this assumption, detecting that the interval of probability values for the aircraft empty weight is such that the risk of not meeting the requirement for flight range in some cases could reach 100%. Based on the performed computations, an inference of necessity for extra studies in the field of aircraft strength and structural design was drawn.

Keywords:

risk-analysis, verification, conceptual design, critical characteristics, key technologies

References

  1. A Guide to the Project Management Body of Knowledge (PMBOK® Guide). 4th ed. An American National Standard ANSI/PMI 99-001-2008, 506 p.

  2. Department of Defense Risk, Issue, and Opportunity Management Guide for Defense Acquisition Programs. Deputy Assistant Secretary of Defense for Systems Engineering, Washington, D.C., 2017, 96 p.

  3. Vasin S.S., Konopleva V. M., Skvorts ov E.B. et a l . Material y V Nauchno-prakticheskoi konferentsii “Upravlenie nauchnymi issledovaniyami i razrabotkami: rol’ nauki v dostizhenii nacional’nyh tcelej ”: Sb. nauch. tr. 04 December 2019; IPU RAN), MOSCOW, Pero, 2020, pp. 140 – 151.

  4. Balyk V.M., Kalutsky N.S. A statistical synthesis of stable design choices for f lying vehicle design processes in conditions of multiple-factor uncertainty. Aerospace MAI Journal, 2008, vol. 15, no 1, pp. 29-36.

  5. Malenkov A.A. Design solutions selection while developing a system of unmanned flying vehicles in conditions of multi- target uncertainty. Aerospace MAI Journal, 2018, vol. 25, no 2, pp. 7-15.

  6. Denisov V.E., Isaev V.K., Ryabov A.M., Shkadov L.I. Uchenye zapiski TsAGI, 1973, vol. IV, no. 2, pp. 137-142.

  7. Gatian K.N. A quantitative, model-driven approach to technology selection and development through epistemic uncertainty reduction. PhD Thesis. Atlanta, Georgia Institute of Technology, 2015, 423 p.

  8. Largent M.C. A Probablistic Risk Management Based Process for Planning and Management of Technology Development. PhD Thesis. Atlanta, Georgia Institute of Technology, 2003.

  9. Menedzhment riska. Tekhnologii otsenki riska GOST R 58771- 2019 (Risk management. Risk assessment technologies, State Standard R 58771-2019), Moscow, Standartinform, 2020, 90 p.

  10. IEC 310110 Risk management - Risk assessment techniques. Geneva, Switzerland, 2019, 19 p.

  11. International Standard ISO 31000 Risk management – Guidelines. 2nd ed. Geneva, Switzerland, 2018, 16 p.

  12. Launer R.L., Wilkinson G.N. (eds) Robustness in statistics. Academic Press, 2014, 296 p.

  13. Orlovskii S.A. Problemy prinyatiya reshenii pri nechetkoi iskhodnoi informatsii (Problems of decision–making with fuzzy initial information), Moscow, Nauka, 1981, 206 p.

  14. Ferson S. RAMAS Risk Calc 4.0 Software: Risk Assessment with Uncertain Numbers. CRC Press, 2002, 240 p.

  15. Gurskii E.I. Teoriya veroyatnostei s elementami matematicheskoi statistiki (Probability theory with elements of mathematical statistics), Moscow, Vysshaya shkola, 1971, 329 p.

  16. Hanss M., Willner K. On using fuzzy arithmetic to solve problems with uncertain model parameters. Institute A of Mechanics, University of Stuttgart, 1996, 246 p.

  17. Shokin Yu.I. Interval’nyi analiz (Interval analysis), Novosibirsk, Nauka, 1981, 112 p.

  18. Skibitskii N.V. Interval’nye metody v zadachakh postroeniya modelei ob»ektov i protsessov upravleniya (Interval methods in problems of constructing models of objects and control processes). Doctor of Technical Sciences. Moscow, MEI, 2005, 310 p.

  19. Solonin I.S. Matematicheskaya statistika v tekhnologii mashinostroeniya (Mathematical statistics in mechanical engineering technology). 2nd ed. Moscow, Mashinostroenie, 1972, 216 p.

  20. Poryadok prinyatiya upravlencheskikh reshenii na osnove otsenki riskov NASA. FGUP NTTs Oboronnogo kompleksa “KOMPAS” №1-315/16, 2016.

  21. Korolyuk V.S., Portenko N.I., Skorokhod A.V., Turbin A.F. Spravochnik po teorii veroyatnostei i matematicheskoi statistike (Handbook of probability theory and mathematical statistics). 2nd ed. Moscow, Nauka,1985, 640 p.

  22. Ermakov S.M. Metod Monte-Karlo i smezhnye voprosy (Monte Carlo method and related issues). Moscow, Nauka,1971, 471 p.

  23. Sistema menedzhmenta kachestva organizatsii aviatsionnoi, kosmicheskoi i oboronnykh otraslei promyshlennosti. GOST R EN 9100-2011 (Quality management systems of organizations of aviation, space and defence industries. Requirements, State Standard R EN 9100-2011), Moscow, Standartinform, 2019, 31 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI