Innovative approach to radiation protection ensuring of inhabited space bases

Aeronautical and Space-Rocket Engineering


Аuthors

Alifanov O. M.*, Ermakov V. Y.**, Tufan A. ***, Biryukova M. V.****, Vasikov D. V.*****

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: o.alifanov@yandex.ru
**e-mail: v_ermakov2003@mail.ru
***e-mail: anttufan@gmail.com
****e-mail: mar_601_24@mail.ru
*****e-mail: denvasikov@mail.ru

Abstract

Habitable space bases are a theoretical autonomous habitat that can be orbital, orbiting a planet, or located directly on its surface. The main purpose of the habitable space bases construction is a more detailed study of the Solar System planets and space objects.

When considering the issue on promising habitable space bases creation, special attention is being paid to protection from charged particles, which impact is one of the main problems concerning the health of astronauts and operability of the onboard electronic equipment, such as computers, sensors, etc. To solve this problem, protection methods, which are divided into the two main groups: active and passive, can be employed. The results of computational and experimental studies of the active protection of habitable space modules from charged particles, as well as passive, including experimental studies of samples of vibration dampers, were analyzed. It was found that the thickness of the material for housing manufacturing significantly affects the radiation dose, which gives an initial assessment of the habitable space modules design. The article presents a mathematical model of active protection, the results of numerical integration of the dependence of the longitudinal deflection and the velocity of the longitudinal deflection of the electron, as well as the computational dependence of the magnetic contribution to the Lorentz force on the kinetic energy of charged particles. The authors proposed a multilayer design of habitable space modules, between of which layers promising and innovative nanomaterials are such as magnetic fluid and polyethylene spheres coated with magnetite are placed. The active protection principle herewith with a magnetic fluid application consists in the fact that charged particles are being absorbed by the magnetic fluid under the impact of the electromagnetic field, and the necessary energy is created by these particles rotation in an electromagnetic field, which speed is being regulated by the control system. The authors analyzed the results of irradiation from gamma radiation, which indicate effectiveness of the proposed habitable space modules design in creating highly effective radiation screens intended for biological and technical objects protection.

Keywords:

inhabited space base, active radiation protection, circular polarization, polyethylene hollow spheres, magnetite coating, multi-layer module design, magnetic fluid, gamma radiation

References

  1. Eckart P. The Lunar Base Handbook: An Introduction to Lunar Base Design, Development, and Operations. New York, McGraw-Hill, 1999, 850 p.
  2. Alifanov O.M., Anfimov N.A., Belyaev V.S. et al. Fundamental’nye kosmicheskie issledovaniya. V 2 kn. Kn. 2. Solnechnaya sistema (Fundamental space research. In 2 books. Book 2. The solar system), Moscow, Fizmatlit, 2014, 456 p.

  3. Halekas J.S., Brain D.A., Mitchell D.L. et al. On the occurrence of magnetic enhancements caused by solar wind interaction with lunar crustal fields. Geophysical Research Letters, 2006, vol. 33. L08106. DOI: 10.1029/2006GL025931

  4. Gaponenko O.V., Gavrin D.S., Sviridova E.S. Structure nalysis of the strategic plans of the space-rocket industry development by method of space functional and industrial technologies R&D classification. Aerospace MAI Journal, 2019, vol. 26, no. 1, pp. 64-81.

  5. Rebeko A.G. Inzhenernyi zhurnal: nauka i innovatsii, 2016, no. 5(53). DOI: 10.18698/2308-6033-2016-5-1496

  6. Donskov A.V. Analysis of modern evaluation and modeling methods of contingencies occurrence risks onboard a spacecraft. Aerospace MAI Journal, 2018, vol. 25, no. 4, pp. 163-169.

  7. Joshi R.P., Qiu H., Tripathi R.K. Configuration studies for active electrostatic space radiation shielding. Acta Astronautica, 2013, vol. 88, pp. 138-145. DOI: 10.1016/j.actaastro.2013.03.011

  8. Hoffman J., Fisher P., Batishchev O. Use of superconducting magnet technology for astronauts radiation protection. NIAC Phase 1 Final Report, American Physical Society Bulletin 49, 2004, 261.

  9. Ermakov V.Yu. Kosmonavtika i raketostroenie, 2019, no. 4(109), pp. 80-88.

  10. Ermakov V.Yu., Tufan A. Kosmonavtika i raketostroenie, 2022, no. 5(128), pp. 134-145.

  11. Biryukova M.V., Tufan A., Ermakov V.YU. Vestnik MGTU im. N.Eh. Baumana. Ser. Mashinostroenie, 2023, no. 1(144), pp. 4-21. DOI: 10.18698/0236-3941-2023-1-4-21

  12. Ermakov V.Yu., Tufan A. Dinamika kosmicheskikh apparatov (Spacecraft Dynamics), Moscow, MAI, 2023, 92 p.

  13. Ermakov V.Yu. Experimental-mathematical modeling оf a lоng-length structure based оn the frequency tests results. Aerospace MAI Journal, 2022, vol. 29, no. 3, pp. 29-40. DOI: 10.34759/vst-2022-3-29-40

  14. Luchi kosmicheskie galakticheskie. Model’ izmeneniya potokov chastits. GOST 25645.150-90 (Galactic cosmic rays. Model of particle flux variation, State Standard 25645.150- 90), Moscow, Standarty, 1991, 11 p.

  15. Luchi kosmicheskie solnechnye. Veroyatnostnaya model’ potokov protonov. GOST 25645.165-2001 (Solar energetic particles. Probabilistic model for proton f luxes, State Standard 25645.165-2001), Moscow, Standarty, 2001, 12 p.

  16. Babkin G.V. Aktivnaya zashchita kosmicheskikh apparatov ot staticheskogo ehlektrichestva v orbital’nykh usloviyakh. Spravochnoe posobie dlya konstruktorov (Active protection of spacecraft from static electricity in orbital conditions: A reference guide for designers). Korolev, TsNIIMash, 2000, 284 p.

  17. Cucinotta F.A., Kim M.-H.Y., Willingham V., George K.A. Physical and Biological Organ Dosimetry Analysis for International Space Station Astronauts. Radiation Research, 2008, vol. 170, no. 1. pp. 127-38. DOI: 10.1667/RR1330.1

  18. Townsend L.W. Critical analysis of active shielding methods for space radiation protection. IEEE Aerospace Conference Proceedings (05-12 March 2005; Big Sky, MT, USA). DOI: 10.1109/AERO.2005.1559364

  19. Glikman L.G. Zhurnal tekhnicheskoi fiziki, 1974, vol. 44, no. 4, pp. 689–697.

  20. Zhuk M.S., Molochkov Yu.B. Proektirovanie linzovykh, skaniruyushchikh, shirokodiapazonnykh antenn i fidernykh ustroistv (Design of lens, scanning, wide-band antennas and feeder devices), Moscow, Ehnergiya, 1973, 439 p.

  21. Ermakov V.Yu. Studying the effect of the beam aerial drive control algorithm on its vibration activity onboard a spacecraft. Aerospace MAI Journal, 2019, vol. 26, no. 2, pp. 175-181.

  22. Spillantini P., Taccetti F., Papini P., Rossi L.A. Radiation shielding of spacecraft in manned interplanetary flights. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, vol. 443, nos. 2-3, pp. 254-263. DOI: 10.1016/S0168-9002(99)01091-8

  23. Donskov A.V., Mishurova N.V., Solov’ev S.V. Automated system for space vehicle status monitoring. Aerospace MAI Journal, 2018, vol. 25, no. 3, pp. 151-160.

  24. Reznik S.V., Prosuntsov P.V., Railyan V.S. et al. Method and results of investigations of thermophysical properties of carbonpolymer composites with full scale samples of beam space structures. Inverse Problems, Design and Optimization Symposium (IPDO, 16-18 2007; April Miami Beach, Florida, USA), pp. 657–660.

  25. Chernogil’ V.B., Zhan-Lyuk K., Grinavtsev V.N. et al. Patent RU 2527047 C1, 27.08.2014.

  26. Golovin K.B., Golovin B.A., Kalinnikova M.V. Yadernaya geofizika (Nuclear geophysics), Saratov, Saratovskii universitet, 2014, 140 p.

  27. Shenyi Z., Donghui H., Wimmer-Schweingruber R.F. et al. Radiation dose of LND on the lunar surface in two years. Chinese Journal of Space Science, 2021, vol. 41, no. 3, pp. 439-444. DOI:10.11728/cjss2021.03.439

  28. Tomašovičová N., Haysak I., Koneracká M. et al. Radiation stability of biocompatibile magnetic fluid. ICMF12 (01-05 August 2010; Sendai, Japan). DOI: 10.48550/arXiv.1004.3448

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI