Studying an aircraft airframe deformation with bragg lattice based fiber-optic sensors

Aeronautical and Space-Rocket Engineering


Аuthors

Bogatyrev M. M.

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

e-mail: bogatyrevmm@gmail.com

Abstract

Development of the regional airline aircraft is being planned with the view for the uninterruptible communication ensuring between regions and remote settlements frequently inaccessible for the ground transport. This aircraft is intended to be equipped with the flight safety monitoring system, including the built-in technical diagnostics and remote data transmission to control loading on its basic structural elements. While traditional methods of structural deformation measuring include strain gauges and Winston bridges, application of optical sensors with Bragg lattice becomes promising alternative especially for the composite materials widespread in both modern and future aircraft. 

This article presents the results of research conducted on an experimental setup replicating deformations measured by the Fiber Bragg lattice-based sensors, which allows performing comparative analysis of their accuracy with traditional strain gauges. Complex studies of metrological characteristics of the measurement system based on the fiber Bragg lattices were performed with the specialized testing rig to assess the feasibility of electric strain gauges replacement by the fiber Bragg lattices. The article recounts in detail the results of these tests.

Metrological characteristics of the FOS&SSG-01 (Belgium) and TechnicaFBG (USA) optical sensors together with two strain gauges were studied within the framework of this study. The key parameters including sensitivity, the sensitivity non-linearity and creep under normal conditions were estimated. The obtained results reveal that the deformation measurement error based on the fiber Bragg lattice exceeds both deformation reproduction error by the testing rig (0.12%) and measurement error obtained with the strain gauges (0.12%). The error observed in the strain gauge channels (0.12%) is explained by the deformation reproduction error as well.

Besides, the studies of the fiber Bragg lattices revealed that the relative error within the range of 350 – 1000 microstrain was of 0.25% for the FOS&SSG-01 sensors (Belgium), and 0.35% for the TechnicaFBG sensors (USA). It is remarkable that higher deformation measurement errors were recorded at the start of the deformation setting range of (0 – 350) microstrain, probably associated with the specifics of the sensor fixing on the beam of pure bending.

The results of the presented study provide a confident basis for the justified application of the fiber optical sensors in the cases when the split-hair accuracy is not obligatory. Permanent advancement of the Bragg lattice based fiber sensors installing promises further enhancing of their application for monitoring the aircraft basic structural elements loading, proposing practical and effective solutions in the aircraft building industry.

Keywords:

fiber Bragg lattice, fiber-optic strain sensors, strain measurement, stress-strain state monitoring, aircraft structures deformation, fiber-optic sensors metrological characteristics, strain reproduction

References

  1. Garmash V.B., Egorov F.A., Kolomiets L.N. et al. Foton-Ekspres, 2005, no. 6(46), pp. 128-140.

  2. Karasik V.E., Lazarev V.A., Neverova N.A. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2008, no. 58, pp. 51-58.

  3. Konnov K.A., Slozhenikina Yu.I., Gribaev A.I. et al. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2017, vol. 17, no. 6, pp. 1004-1010. DOI: 10.17586/2226-1494-2017-17-6-1004-1010

  4. Novikova V.A., Varzhel’ S.V., Dmitriev A.A. et al. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2018, vol. 18, no. 5, pp. 751-757. DOI: 10.17586/2226-1494-2018-18-5-751-757

  5. Mun’ko A.S., Varzhel’ S.V., Arkhipov S.V. et al. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2017, vol. 60, no. 4, pp. 340-346. DOI: 10.17586/0021-3454-2017-60-4-340-346

  6. Stam A.M., Idrisov R.F., Gribaev A.I. et al. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2017, vol. 60, no. 5, pp. 466-473. DOI: 10.17586/0021-3454-2017-60-5-466-473

  7. Mun’ko A.S., Varzhel’ S.V., Arkhipov S.V. et al. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2015, vol. 15, no. 2, pp. 241-245. DOI: 10.17586/2226-1494-2015-15-2-241-245

  8. Ser’eznov A.N., Kuznetsov A.B., Luk’yanov A.V. et al. Materialy III Otraslevoi konferentsii po izmeritel’noi tekhnike i metrologii dlya issledovanii letatel’nykh apparatov (05–06 June 2018; Zhukovskii). Zhukovskii, TsAGI, 2018, pp. 588-598.

  9. Bautin A.A., Svirskii Yu.A., Pankov A.V. et al. Prikladnaya fotonika, 2018, vol. 5, no. 4, pp. 391-407.

  10. Belovolov M.I., Belovolov M.M., Semenov S.L. et al. Konstruktsii iz kompozitsionnykh materialov, 2020, no. 3(159), pp. 45-53.

  11. Shipunov G.S., Voronkov A.A., Pelenev K.A. et al. Materialy Mezhdunarodnykh konferentsii “Perspektivnye materialy s ierarkhicheskoi strukturoi dlya novykh tekhnologii i nadezhnykh konstruktsii” i “Khimiya nefti i gaza” v ramkakh Mezhdunarodnogo simpoziuma “Ierarkhicheskie materialy: razrabotka i prilozheniya dlya novykh tekhnologii i nadezhnykh konstruktsii” (01–05 October 2018; Tomsk). p. 488. DOI: 10.17223/9785946217408/314

  12. Blokin-Mechtalin Yu.K., Bogatyrev M.M., Zaitsev M.D. et al. Materialy III Otraslevoi konferentsii po izmeritel’noi tekhnike i metrologii dlya issledovanii letatel’nykh apparatov (05–06 June 2018; Zhukovskii). Zhukovskii, TsAGI, 2018, pp. 554-563.

  13. Larin A.A., Fedotov M.Yu., Bukharov S.V. et al. Prikladnaya fotonika, 2017, vol. 4, no. 4, pp. 310-323.

  14. Chandler K., Ferguson S., Graver T. et al. On-line structural health and fire monitoring of a composite personal aircraft using an FBG sensing system. SPIE – The International Society for Optical Engineering, 2008, vol. 6933. DOI: 10.1117/12.783125

  15. Schmidt H.- J., Schmidt-Brandecker B. Design Benefits in Aeronautics Resulting from Structural Health Monitoring. Encyclopedia of Structural Health Monitoring. Edited by Boller C., Chang F., and Fujino Y. – John Wiley & Sons, Ltd. 2009, pp. 1807-1813.

  16. Fernández-López A., Menendez J.M., Güemes A. Damage detection in a stiffened curved plate by measuring differential strains. 16th International Conference on Composite Materials (8-13 2007; International Conference Center, Kyoto, Japan), pp. 1-8.

  17. Islamov R.R., Aleksandrov Yu.V., Gus’kov S.S. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2016, no. 5, pp. 45–50.

  18. Manvelyan V.S. Six-component rotating strain-gauge balance for coaxial rotors testing. Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 53-64. DOI: 10.34759/vst-2020-1-53-64

  19. Petronevich V.V., Lyutov V.V., Manvelyan V.S., Kulikov A.A., Zimogorov S.V. Study on six-component rotating strain-gauge balance development for helicopter tail rotor testing. Aerospace MAI Journal, 2021, vol. 28, no. 2, pp. 69-84. DOI: 10.34759/vst-2021-2-69-84.

  20. Petronevich V.V., Lyutov V.V., Manvelyan V.S., Kulikov A.A., Zimogorov S.V. Studies on six-component rotating strain-gauge balance calibration for aircraft propellers testing. Aerospace MAI Journal, 2021, vol. 28, no. 4, pp. 48-61. DOI: 10.34759/vst-2021-4-48-61

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI