Aeronautical and Space-Rocket Engineering
Аuthors
*, **Siberian Aeronautical Research Institute named after S.A. Chaplygin, 21, Polzunov St., Novosibirsk, 630051, Russia
*e-mail: nio2@sibnia.ru
**e-mail: terekhovae@sibnia.ru
Abstract
The article recounts basic provisions of rational parameters selection algorithm (RPSA) for minimum weight composite panels loaded by longitudinal, transversal and shear streams at both strength and stability limitations.
Several methods for the panels from composite materials optimization are described are described for the start, and activities oriented on the panel weight minimization and rational layers orientation in the stack are considered.
Further, analytical expressions for strain intensity and buckling factor determininп are presented. The pack strength criterion consists in the current strain intensity limiting by the set maximum level of the strain intensity. The energy principle was applied to obtain analytical expressions of the buckling factor. These analytical expressions account for the discrete location of the stringers at the panel and compatibly of bending strain and torsion strain of stringers and panel.
The RPSA steps description is presented thereafter. The first PRSA steps include selection of the rational layup thickness, as well as the number and height of stringers, ensuring minimum weight of the panel at meeting both strength and buckling conditions. At the last step of the algorithm the current thickness is being divided by the monolayer thickness, and the obtained result is being rounded up to the even number of layers. Thus, the buckling factor is increased. This effect is employed to reduce the strain intensity by changing position of the monolayers with different fiber angles (±45, 0, 90) in the current layup. Strain intensity is the target function at this step. Thus, this offers a possibility to the panel stiffness increasing by the strain intensity minimization with constant mass and buckling factor ensuring.
Analytical solutions verification was performed by the critical buckling loads comparing with the results of finite element analysis. Satisfactory results were obtained. The RPSA results are in good agreement with certain solutions from Russian and foreign sources as well.
Rational parameters of the unstiffened and stringer panel from the ACM102 prepreg were obtained as the example of the RPSA operation for the stiffened and stringer panels with regard to the deformation intensity minimizing and without it. The article demonstrates deformation intensity may be reduced more than twice on the weight and stability retention by correcting positions of layers with various reinforcing angles (±45°, 0, 90°). The first buckling modes and eigenvalues obtained by the finite element method are presented as an example.
Keywords:
laminated composite, composite strength, composite panel buckling, layers stacking, rational designReferences
-
Eger S.M. Proektirovanie passazhirskikh reaktivnykh samoletov (Design of passenger jet aircraft), Moscow, Mashinostroenie, 1964, 452 p.
-
Dubovikov E.A. Mnogourovnevyi algoritm otsenki perspektivnykh konstruktivno-silovykh skhem kompozitnykh aviakonstruktsii (Multi-level algorithm for qualification promising structural layouts of composite airframes). Ph.D. thesis. Zhukovskii, TsAGI, 2017, 130 p.
-
Vedernikov D.V., Shanygin A.N. Strength analysis of regional aircraft prospective wing structures based on parametric models. Aerospace MAI Journal, 2022, vol. 29, no. 2, pp. 61-76. DOI: 10.34759/vst-2022-2-61-76
-
Mitrofanov O.V. Composite material wing panel of minimal mass design considering supercritical skin response. Aerospace MAI Journal, 2002, vol. 9, no. 1, pp. 35-42.
-
Mitrofanov O.V., Mazen O. Smooth metallic panels designing while stability and strength ensuring at postbuckling behavior. Aerospace MAI Journal, 2022, vol. 29, no. 1, pp. 36-47. DOI: 10.34759/vst-2022-1-36-4.
-
Maksimenko V.N., Olegin I.P., Pustovoi N.V. Metody rascheta na prochnost’ i zhestkost’ elementov konstruktsii iz kompozitov (Methods for calculating the strength and stiffness of composite products), Novosibirsk, NGTU, 2015, 424 p.
-
Boldyrev A.V., Komarov V.A. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2016, no. 8-9, pp. 21-26.
-
Dudchenko A.A., Kanchaya R.R.A. Konstruktsii iz kompozitsionnykh materialov, 2011, no. 2, pp. 21-34.
-
Balunov K.A., Ishmuratov F.Z., Tuktarov S.A. et al. Materialy Nauchno-tekhnicheskoi konferentsii “Prochnost’ konstruktsii letatel’nykh apparatov” (08–09 December 2016; Zhukovskii).Zhukovskii, TsAGI, 2017, vol. 2764, pp. 29-36.
-
Morozov N.A., Vlasov Yu.L., Gavrilov A.A. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2015, no. 9(184), pp. 164-169.
-
Mikhailovskii K.V., Baranovski S.V. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2018, no. 5(698), pp. 75-84. DOI: 10.18698/0536-1044-2018-5-75-84
-
Tun L.Kh., Prosuntsov P.V. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2021, no. 9(738), pp. 97-107. DOI: 10.18698/0536-1044-2021-9-97-107
-
Grishchenko S.V. Konstruktsii iz kompozitsionnykh materialov, 2019, no. 4(156), pp. 45-49.
-
Yang N.M., Aung Ch.T., Martirosov M.I., Rabinskii L.N. Materialy XX Yubileinoi Mezhdunarodnoi konferentsii po vychislitel’noi mekhanike i sovremennym prikladnym sistemam (24–31 May 2017; Alushta). Moscow, MAI-Print, 2017, pp. 349-350.
-
Khaziev A.R. Optimal’noe proektirovanie kompozitnykh elementov konstruktsii po usloviyam prochnosti, zhestkosti i ustoichivosti (Optimal design of composite structure elements by strength, stiffness and buckling conditions), Moscow, Ph.D. thesis. Moscow, MATI, 2009, 210 p.
-
Kireev V.A., Kazakov I.A. Uchenye zapiski TsAGI, 2023, vol. LIV, no. 3, pp. 89-100.
-
Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti (Applied plasticity and creep theory), Moscow, Mashinostroenie, 1975, 400 p.
-
Timoshenko S.P. Ustoichivost’ sterzhnei, plastin i obolochek. Sbornik statei. Moscow, Nauka, 1971, 808 p.
-
Badrukhin Yu.I., Terekhova E.S. Kraevye zadachi i matematicheskoe modelirovanie. Tematicheskii sbornik nauchnykh statei. Novokuznetsk, KGPI KemGU, 2023, pp. 8-15.
-
Liu X., Featherston C.A., Kennedy D. Two-level layup optimization of composite laminate using lamination parameters. Composite Structures, 2019, vol. 211, pp. 337-350. DOI: 10.1016/j.compstruct.2018.12.054
-
Irisarri F.-X., Bassir D.H., Carrere N., Maire J.-F. Multiobjective stacking sequence optimization for laminated composite structures. Composite Science and Technology, 2009, vol. 69, nos. 7-8, pp. 983-990. DOI: 10.1016/j.compscitech.2009.01.011
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |