Aerodynamic Criteria for Limitations Substantiation while External Surface Refurbishing of the Transport Category Aircraft

Aeronautical and Space-Rocket Engineering


Аuthors

Berezko M. E.1, 2*, Sagaidak M. V.1, 2**, Shevyakov V. I.1***

1. Yakovlev Corporation Regional Aircraft Branch, 26, Leninskaya Sloboda str., Moscow, 115280, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: maxberezko@yandex.ru
**e-mail: mikhaelvs@mail.ru, m_sagaydak@sj.yakovlev.ru
***e-mail: shevvi@mail.ru

Abstract

Defects of the transport aircraft external surface, requiring structure repairing, may appear in the course of its operation. These are dents, steps, gaps, paint-and-lacquer coating damage, corrosion, etc. Defects may affect both the strength and aerodynamic characteristics of the aircraft. The need and urgency of the aircraft repairs depend on the degree of this effect.

The presented article considers the defects, at which elimination the cases of the repairs aftermath effect on air signals system sensors readings such as static pressure, total pressure and angles of attack are possible. Such cases should be prevented.

The authors present aerodynamic criteria for restrictions substantiation when the external surface repairs performing of the transport category aircraft. The article considers two tasks as examples. They are the fuselage repair in the area where the air signal system sensors are located employing a pad, and a plate and static pressure sensor repair. The limitations substantiation criterion during repairs in the first task is the value of the mounting place and pad size effect on the sensors readings. While in the second task this is the value of the slab and pressure intake defects such as chips, caverns, scratches and corrosion, impact on the sensors readings. Development of recommendations on restrictions for the pad mounting places and sizes selection was demonstrated for the first task, and on limitations on the number and size of defects in the slab and static pressure sensor, under which one can do without their elimination for the second task.

Numerical simulation of the flow-around was performed with ANSYS FLUENT software. The system of Navier–Stokes equations averaged over Reynolds and closed by the Spalart–Allmaras turbulence model was solved. The problems were being solved in a two-dimensional formulation. Computational mesh was unstructured hybrid (Poly-HexCore). Firstly, a surface mesh of triangles was created, and then a volumetric computational mesh with a prismatic layer was generated on it.

The approaches outlined in the work allow substantiating the development of limitations on the location and size of the pads when repairing damage to the external surface of transport category aircraft, as well as permissible number and size of damage to plates and static pressure intakes.

Keywords:

transport category aircraft, external surface defects, local aerodynamics, harmful resistance, air signal system, barometric flight altitude, airframe structure repairing

References

  1. Fedorenko G.A. Trudy TsAGI. Issue 2100. Moscow, Izdatel'skii otdel TsAGI, 1981, 36 p.

  2. Shevyakov V.I. Nauchnyi vestnik MGTU GA, 2014, no. 199, pp. 62-73.

  3. Shevyakov V.I. Nauchnyi vestnik MGTU GA, 2011, no. 163, pp. 133-137.

  4.  Getting hands-on experience with aerodynamic deterioration. A performance audit view. Airbus Industrie. STL 945.3399/96. France, 2001, 172 p.

  5. Spalart P., Allmaras S. A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit (06-09 January 1992; Reno, NV, USA). DOI: 10.2514/6.1992-439

  6. Rukovodstvo po dopusku vozdushnykh sudov i ekspluatantov k poletam v usloviyakh minimuma vertikal'nogo eshelonirovaniya 1000 fut mezhdu eshelonami 290 i 410 vklyuchitel'no (RVSM) v Evropeiskom regione (Guidelines for the admission of aircraft and Operators to flights under conditions of a minimum vertical separation of 1000 ft between echelons 290 and 410 inclusive (RVSM) in the European region). Moscow, FAS Rossii, 1999, 24 p.

  7.  Mezhgosudarstvennyi aviatsionnyi komitet. Aviatsionnye Pravila. Chast' 25. Normy letnoi godnosti samoletov transportnoi kategorii (Interstate Aviation Committee. Civil Aviation Safety Regulations. Part 25 - Airworthiness standards: transport category airplanes), St. Petersburg, SZ RCAI, 2022, 357 p.

  8. Terekhin V.A., Shevyakov V.I., Chernov Yu.P., Pushkov S.G. Materialy XXII Nauchno-tekhnicheskoi konferentsii po aerodinamike (03–04 March 2011; p. Volodarskogo). Zhukovskii, Izdatel'skii otdel TsAGI, 2011, pp. 133.

  9. Dolotovskii A.V., Terekhin V.A., Chernov Yu.P. et al. Materialy XXXIII Nauchno-tekhnicheskoi konferentsii po aerodinamike (15-16 December 2022; Zhukovskii). - Zhukovskii: Izdatel'skii otdel TsAGI, 2022, pp. 53-54.

  10. Shevyakov V.I. Nauchnyi vestnik MGTU GA, 2013, no. 188, pp. 53–60.

  11. Berezko M.E., Sagaidak M.V., Shevyakov V.I. Aerodynamic aspects of airframe repairs for transport category aircraft. Aerospace MAI Journal, 2024, vol. 31, no. 2, pp. 16-28.

  12. Grudinin M.V., Efremov A.A., Makarov I.A., Sysoev V.V. Materialy XXXII Nauchno-tekhnicheskoi konferentsii po aerodinamike (28-29 October 2021; Zhukovskii). Zhukovskii, Izdatel'skii otdel TsAGI, 2021, p. 50.

  13. Efremov A.A., Makarov I.A., Sysoev V.V. Materialy XXXII Nauchno-tekhnicheskoi konferentsii po aerodinamike (28-29 October 2021; Zhukovskii). Zhukovskii, Izdatel'skii otdel TsAGI, 2021, p. 58.

  14. Golovkin M.A., Efremov A.A., Sysoev V.V. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2018, no. 2, pp. 112-116.

  15. Golovkin M.A., Efremov A.A., Sysoev V.V. Datchiki i sistemy, 2018, no. 10(229), pp. 18-26.

  16. Petunin A.N., Ponomarev L.F. Uchenye zapiski TsAGI, 1999, vol. XXX, nos. 1-2, pp. 84-87.

  17. Efimov I.P., Konyukhov G.A., Fedorov N.G. K raschetu mnogokanal'nykh priemnikov vozdushnykh davlenii (To the calculation of multichannel air pressure receivers), Ul'yanovsk, UlGTU, 1993.

  18. Lyu K.K., Efimov I.P. Promyshlennye ASU i kontrollery, 2021, no. 7, pp. 55–60. DOI: 10.25791/asu.7.2021.1299

  19. Korsun O.N., Nikolaev S.V., Pushkov S.G. Izvestiya RAN. Teoriya i sistemy upravleniya, 2016, no. 3, pp. 118-129. DOI: 10.7868/S0002338816030112

  20. Pushkov S.G., Kharin E.G., Lovitskii L.L. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal, 2010, no. 6, pp. 30-36.

  21. Pushkov S.G., Gorshkova O.Yu., Malakhova I.V., Lovitskii L.L. Svidetel'stvo o gosudarstvennoi registratsii programm dlya EVM "Programmnyi kompleks obrabotki rezul'tatov letnykh ispytanii po opredeleniyu aerodinamicheskikh pogreshnostei izmereniya vysoty i skorosti na rezhimakh gorizontal'nogo ustanovivshegosya poleta” № RU2023614049, 22.02.2023 (Certificate of state registration of computer programs Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM “Software package for processing flight test results to determine aerodynamic errors in measuring altitude and speed in horizontal steady-state flight modes“, no. RU2023614049, 22.02.2023).

  22. Pushkov S.G., Gorshkova O.Yu., Korsun O.N. Materialy VII Mezhdunarodnogo Aerokosmicheskogo kongressa IAC'12 (26–31 August 2012; Moscow). Moscow, IP Khoruzhevskii A.I., 2012, pp. 308-312.

  23. Pushkov S.G., Kharin E.G., Kozhurin V.R., Lovitskii L.L. Aviakosmicheskoe priborostroenie, 2010, no. 4, pp. 3-13.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI