Simulation of stamping process of aviation engines parts

Mechanical Engineering


Аuthors

Khairnasov K. Z.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: kamilh@mail.ru

Abstract

In the article, the methodology and algorithm of the process of deformation of the shell under the action of dynamic pressure in general case of a variable over the shell surface are considered. This algorithm can be applied for the shells of rotation of an arbitrary shape. Such problems appear during the shaping of the shell- type structures from the flat plates.
As a research method, the finite elements method is applied. The system of differential equations is solving by Runge-Kutta method with the automatic selection of the loading step to the specified accuracy.
The developed methods and algorithms allow analyzing large displacements of thin shells and plates under the dynamic loads. The solutions of the problems of large displacements and deformations are fall into several stages. Stiffness and vector of generalized external forces are recalculated when the deflections are reached the order of thickness of a plate. The recalculation is based on the achieved level of stress-strain state of the shell and changes in the geometry of the shell.
The algorithms were used to calculate the shaping of a conical shell from a circular plate under dynamic loading. Accordance of the theoretical and experimental results observed.
The main result of the study shows that it is possible to control the loss of stability of thin plates and shells at high plastic strains under the dynamic loading.

Keywords:

circular plate, process deformation, mathematical modeling, large displacement, impulse pressure, a method of finite elements

References

  1. Khairnasov K.Z., Yudaev V.B., Favorin V.N. Sbornik IIVsesoyuznogo simpoziuma «Ustoichivost vmekhanike deformiruemogo tverdogo tela», Kalinin, 1986, рp. 12-21.
  2. Khayrnasov K.Z., Yudaev V.B., Favorin V.N. Sbornik Mezhdunarodnoi konferentsii pomekhanike razrusheniya Kitai, Pekin, 1987, pр. 122-130.
  3. Striklin D., Navaratna D., Pian T. Rocket engineering and Astronautics, 1966, vol.4, no.11, pр. 253-254.
  4. Striklin D., Kheysler V, Rizemann V. Raketnaya tekhnika ikosmonavtika, 1973, vol.11, no.3, pр. 45-56.
  5. Striklin D., Martines D., Tellerson D., Khong D., Kheysler V. Raketnaya tekhnika ikosmonavtika, 1971, no.4, pр. 108-118.
  6. Striklin D., Kheysler V., Makdugoll N., Stebbins F. Raketnaya tekhnika ikosmonavtika, 1968, vol.6, no.12, pр. 82-89.
  7. Mushtari Kh. M., Galimov K.Z., Nelineynaya teoriya uprugikh obolochek (Nonlinear theory ofelastic shells), Kazan, Tatknigoizdat, 1957, 431p.
  8. Obraztsov I.F., Volmir A.S., Khayrnasov K.Z. Doklady ANSSSR, 1982, vol.266, no.6, pр. 1343-1346.
  9. Krivtsov V.S. Aviatsionno-kosmicheskaya tekhnika itekhnologiya, 2007, no.1 (37), pр. 13-16.
  10. LugovoyP.Z., Meysh V.F. Problemy prochnosti, 2000, no.4, рp. 86-96.
  11. Melenchuk A.P. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2004, vol.12, no.4, pр. 11-19.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI