Applied Mathematics, Mechanics and Physics
Аuthors
*, **, ***Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
*e-mail: gidaspov@mai.ru
**e-mail: moskalenko-o@yandex.ru
***e-mail: pirumov@mai.ru
Abstract
The object of researchStationary waves of burning and detonation in kerosene — air gas-droplet mixture
Theme
Numerical simulation of combustion and detonation in combustible gas — drop kerosene — air mixture
Purpose
The article is considered with the development of a simplified physical-mathematical model of the combustion-detonation process of gas-droplet kerosene- air mixture; numerical simulation two problems: self- ignition of the combustible mixture for a shock wave traveling with a constant velocity along the duct and mixture dynamics after the injection of particles in high- temperature air flow.
The method of investigation
Numerical simulation
Results
We present the physical-mathematical model, computational algorithms and software for numerical simulation of self-ignition of gas-droplet kerosene- air mixture for a shock wave extending with a constant velocity in the duct (the detonation wave (DW)) and after injection of particles in high-temperature air flow (burning wave (BW)). In our study the kerosene was considered as unicomponent «gross matter» that evaporates and is involved in gas-phase chemical reactions. Processes occurring in the gas phase were considered in three formulations: «equilibrium» — was considered that chemical reactions occur in equilibrium; «nonequilibrium-reversible» and «nonequilibrium-irreversible». For two latter formulations the chemical transformations described gross mechanism in which all reactions are considered reversible and part of reactions are irreversible respectively. We studied the influence of the mass fraction and the initial droplet diameter on the structure of waves of burning and detonation. Minimum velocity of detonation and the maximum velocity of the air were obtained using computational methods for this formulation. According to the results, there are stationary regimes in the stream.
It is shown, that using traditional «non-equilibrium- irreversible» model may lead to inaccurate estimates of heat emission during burning and detonation (Fig. 1). At the same time, the trajectories of processes in the phase plane of «specific volume-temperature» (Fig. 2) end at the equilibrium adiabat for «equilibrium» and «nonequilibrium-reversible» models, but not for «nonequilibrium-irreversible» model.
The developed physical-mathematical model and computational algorithms are used as an element of techniques for simulation of burning and detonation of kerosene-air mixture in the multidimensional formulation.
Fig. 1. The temperature distribution in the DW (). Models: 1,2 «equilibrium»; 3, 4 «Nonequilibrium reversible»; 5, 6 «Nonequilibrium irreversible»; 1, 3, 5 initial droplet diameter =10 microns, 2, 4, 6 = 50 microns
а)
б)
Fig. 2. a) The change of temperature in DW (= 298,15 К), b) The temperature in the BW (= 1000 К) on the phase VT plane ( = 101325 Pa, = 50 microns): . Model: × «equilibrium»; «nonequilibrium reversible»; solid line «nonequilibrium irreversible» (ДА equilibrium adiabat, УА shock adiabat)
Field of application of the results and conclusionsDeveloped computational algorithms and computer programs can be used for designing advanced propulsion ystems.
Keywords:
numerical simulation, gas-droplet mixture, burning and detonation of kerosene-air fuel mixture, chemical and phase transformationsReferences
- Mitrofanov V.V. Detonatsiya gomogennykh i geterogennykh sistem (Detonation of homogeneous and heterogeneous systems), Novosibirsk, Institut gidrodinamiki im. M.A. Lavrenteva SO RAN, 2003, 200 p.
- Basevich V.Ya., Frolov S.M. Khimicheskaya fizika, 2006, vol. 25, no. 6, pp. 54-62.
- Basevich V.Ya., Belyaev A.A., Medvedev S.N., Posvyanskii V.S., Frolov F.S., Frolov S.M. Simulation of the autoignition and combustion of n-heptane droplets using a detailed kinetic mechanism, Russian Journal of Physical Chemistry B, 2010, vol. 4, no. 6, pp. 995-1004.
- Fedorov A.V., Tropin D.A. Mathematical model of detonation combustion of kerosene vapor in an oxidizer. Combustion, Explosion, and Shock Waves. January 2012, vol. 48, no 1, pp. 41-48
- Gidaspov V.Yu. Elektronnyi zhurnal «Trudy MAI», 2013, no. 66, available at: http://www.mai.ru/science/trudy/ eng/published.php?ID=40233 (accessed 27.06.2013).
- Frank-Kamenetskii D.A. Diffusion and heat exchange in chemical kinetics, Princeton, University press, 1955, 370 p.
- Volkov V.A., Gidaspov V.Yu., Pirumov U.G., Streltsov V.Yu. TVT, 1998, vol. 36, no. 3, pp. 424-434.
- Pirumov U.G. Matematicheskoe modelirovanie v problemakh okhrany vozdushnogo basseina (Mathematical modeling in problems of air pollution safety), Moscow, MAI, 2001, 340 p.
- Gidaspov V.Yu., Moskalenko O.A., Pirumov U.G. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 2, pp. 51-61.
- Zeldovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M. Mathematical theory of combustion and explosions, New York, Consultants Bureau, Plenum Press, 1985, 597 p.
- Gurvich L.V., Veits I.V., Medvedev V.A. Termodinamicheskie svoistva individualnykh veshchestv (Thermodynamic properties of particular materials), Moscow, Nauka, 1982, vol. 1, part 2, 326 p.
- Dregalin A.F., Zenukov I.A., Kryukov V.G., Naumov V.I. Matematicheskoe modelirovanie vysokotemperaturnykh protsessov v energoustanovkakh (Mathematical modeling of high-temperature processes in power plants), Kazan, Kazanskii universitet, 1985, 263 p.
- Reid R.C., Sherwood T.K. Properties of Gases and Liquids, New York: McGraw-Hill, 1957, 592 p.
- Vargaftik N.B. Handbook of Thermal Conductivity of Liquids and Gases, CRC Press, 1994, 162 p.
- Gidaspov V.Yu. Matematicheskoe modelirovanie, 2006, vol. 18, no. 8, pp. 64-76.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |