The way to simulate meteoroids and orbital debris impact to spacecraft elements by means of monte-carlo method

Spacecraft and Rockets


Аuthors

Nadiradze A. B.1*, Smirnov V. A.2**

1. ,
2. Compani «Information satellite systems of academician M.F. Reshetnev», 52, Lenin str., Zheleznogorsk, Krasnoyarsk region, 662972, Russia

*e-mail: nadiradze@mai.ru
**e-mail: smirnov@iss-reshetnev.ru

Abstract

This article discusses an algorithm of Monte Carlo impact ids and orbital debris on elements of spacecraft.
A feature of this algorithm is the use of group method.
In which all the particles are separated into a plurality of classes. Division into classes produced by the distribution function parameters (mass density, diameter, speed, direction of the velocity vector) and the angle of impact with the target. For each target for each class are calculated the parameters of interaction of particles with a target particle and the parameters for particle fluxes penetrating capable goal target. The result is a matrix of interaction parameters and matrix penetration («the transformation of the table»), which are then used in the integration. This allows several orders of magnitude increase computing speed and significantly increase the accuracy of calculations at a reasonable computation time. This allows several orders to reduce the amount of computation and significantly increase the accuracy of calculations at a reasonable computation time. Furthermore, the considered algorithm allows efficient parallelization, allowing further increase its performance. To illustrate the algorithm in the article shows the results of the impact meteor streams and technogenic particles on the spacecraft solar panels and fuel tank disposed within the housing spacecraft. Such calculations require high spatial resolution, which is to get with a small number of trajectories is not possible. However, the proposed algorithm can solve such problems at a reasonable computational time. It has been found that the presence of even small gaps (5-10 mm), there is a significant increase in the density of particles damaging flow inside the spacecraft casing. The reason for this is the increase in flow of damaging high-speed streams of small particles. The algorithm performance on modern PCs are estimated at 2 ? 104 vertices / h with a geometric model complexity 1-2 million triangles and the resolution of 105 rays/vertex. The proposed algorithm and its implementation can be used for design of spacecraft operating in Earth orbits.

Keywords:

meteoroid, orbital debris, high velocity impact, spacecraft, algorithm, Monte-Carlo method, code parallelization

References

  1. Panasyuk M.I., Novikov L.S. Model kosmosa (Model of space), Moscow, Knizhnyi dom Universitet, 2007, vol. 2, 1144 p.
  2. Kinslou R. Vysokoskorostnye udarnye yavleniya (High Impact phenomena), Moscow, Mir, 1973, 511 p.
  3. Meshcheryakov S.A. Sbornik nauchnykh trudov «Teoreticheskie i eksperimentalnye issledovaniya voprosov obshchei fiziki», Moscow, TsNIImash, 2006, pp. 71-85.
  4. Space Environment, ECSS-E-ST-10-04C, ESA Requirements and Standards Division, Nordwijk The Netherlands, 15 November 2008, pp. 105.
  5. Christiansen E.L., Arnold J., Corsaro B. Handbook for Designing MMOD Protection, NASA Johnson Space Center, NASA/TM-2009-214785, 2009, 136 p.
  6. Sokolov V.G., Christiansen E.L., Gorbenko A.V., Feldstein V.A., Romanchenkov V.P., Panichkin N.G., Yachlakov Yu.V. and Zinchenko L.V. The Effect of Thin Deployable Construction Elements of the International Space Station on the Probability of Its Hull Penetration by Meteoroids and Orbital Debris, Int. Journal of Impact Eng., December 2001, vol. 26, pp. 725- 734.
  7. Piekutowski A.J. Effects of Scale on Debris Cloud Properties, Int. Journal Impact Engng., 1997, vol. 20, pp. 639-650.
  8. Edelstein K. Hypervelocity Impact Damage Tolerance of Fused Silica Glass, 43rd International Astronautical Congress, IAF 92-0334, Washington D.C., August 28- September 5 1992, 21 p.
  9. Smirnov V.M., Semenov A.S., Sokolov V.G., Konoshenko V.P., Kovalyov I.I. Study of Micrometeoroid and Orbital Debris Effects on the Solar Panels Retrieved from the Space Station MIR, Space Debris, 2000, vol. 2, no. 1, pp. 1-7.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI