The use of non-contact bearings in aircraft

Propulsion and Power Plants


Аuthors

Ismagilov F. R., Khayrullin I. H., Vavilov V. E.*, Yakpov A. M.**, Bekuzin V. I.***

Ufa State Aviation Technical University, USATU, 12, K. Marx str., Ufa, 450008, Republic of Bashkortostan, Russia

*e-mail: s2_88@mail.ru
**e-mail: aynurpov@mail.ru
***e-mail: tiobaldo1@rambler.ru

Abstract

One of the major complex problems facing modern aircraft manufacturers is to increase energy efficiency, fuel efficiency and environmental performance of aircraft (PA), with an increase in their performance and expansion capability solved PA. To partially solve this problem in PA used and planned to use contactless bearing supports (CBC) that increase the speed of equipment aircraft, its environmental friendliness and reliability, while reducing the weight and dimensions.

From the analysis of works of Russian and foreign authors can conclude that in the elements and nodes of the aircraft used several types of CBC:

 - Aerodynamic bearings;
 - Air bearings;
 - Active magnetic bearings;
 - Hybrid magnetic bearings.

Table shows a comparison of the considered types of criterial CBC considering the application (aviation industry).

Table shows that the most promising type of non- contact bearings, to provide a reliable and efficient operation of the equipment of the aircraft, as well as provide the ability to integrate non-contact bearings in gas turbine aircraft engine is a hybrid magnetic bearings. In order to increase the effectiveness of their use in aircraft is necessary to solve a number of problems, such as an increase in the operating temperature of high-coercivity permanent magnets, the creation is not sensitive to the temperature of sensorless control methods rotor position, it is necessary to expand research on the development of high-temperature insulation materials, as well as to produce a study on control system synthesis capabilities hybrid magnetic bearings, and aircraft systems.

Comparative analysisof gas bearings and hybrid magnetic bearings

In addition, there are a number of unsolved theoretical problems of research of hybrid magnetic bearings, for example, there is no uniform classification of their design concepts and designs, etc. In other words, for the successful implementation of programs more electric aircraft, it is necessary to extend the common theoretical base on hybrid magnetic bearings.

Keywords:

gas-dynamic bearings, gasostatic bearings, active magnetic bearings, hybrid magnetic bearings

References

  1. Perullo C.A., Mavris D.N., Fonseca E. An integrated assessment of an organic Rankine cycle concept for use in onboard aircraft power generation, ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, United States, 3-7 June 2013, pp. 57-61.
  2. Moore M.D., Fredericks B. Misconceptions of electric propulsion aircraft and their emergent aviation markets, 52nd AIAA Aerospace Sciences Meeting — AIAA Science and Technology Forum and Exposition, 13-17 January 2014, National Harbor, United States, pp. 52-58.
  3. Xu L., Kyprianidis K.G., Gronstedt T.U.J. Optimization study of an intercooled recuperated aero- engine, Journal of Propulsion and Power, March 2013, vol. 29, no. 2, pp. 424-432.
  4. Epstein A.H. Aeropropulsion for commercial aviation in the 21st century and research directions needed, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013, Grapevine, United States, 7-10 January 2013, pp. 77-86.
  5. Howse M. All electric aircraft, IEE Power Engineer, August 2003, vol. 17, no. 4, pp. 35-37.
  6. Ryu K., Andres L.S. On the failure of a gas foil bearing: High temperature operation without cooling flow, Journal of Engineering for Gas Turbines and Power, 2013, vol. 135, no. 11, pp. 18-25.
  7. Giri L. Agrawal FOIL Air/gas bearing technology ~ an overview, ASME Publication 97-GT-347, pp. 2-11.
  8. Bulat P.V. The history of the gas bearings theory development, World Applied Sciences Journal, 2013, vol. 27, no. 7, pp. 893-897.
  9. SpecBearings, available at: http://www.techlab.cz/en/SpecBearings.pdf
  10. Beschastnykh V.N., Ravikovich Yu.A. Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol. 17, no. 3, pp. 91-98.
  11. Foil Bearings Example Applications, available at: http:// www.nano-nano.cc/foil-bearings-applications.html
  12. Dellacorte C. The Evaluation of a Modified Chrome Oxide Based High Temperature Solid Lubricant Coating for Foil Gas Bearings, NASA/TM-1998-208660, Cleveland, Oct. 1998, pp.128-138.
  13. Ermilov Yu.I. Teoreticheskoe i eksperimentalnoe opredelenie predelnoi nesushchei sposobnosti osevykh lepestkovykh gazodinamicheskikh podshipnikov (Theoretical and experimental determination of ultimate bearing capacity axial petal gas-dynamic bearings), Doctors thesis, Moscow, MAI, 2005, 120 p.
  14. Ponomarev B.A., Gavrilov V.V. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2009, no. 1, pp. 41-55.
  15. A World of Air Bearings Solutions, available at: http://westwind-airbearings.com/airBearing/
  16. Rui Bin Xiong, Ying Lin Ke, Pu Jin Huang An Adaptive Posture Following and Keeping Fixture Based on Aerostatic Bearing and Universal Ball Joint for Aircraft Digital Assembly, Materials Science Forum, 2009, vol. 626 — 627, pp. 623-628.
  17. Becker K.-H. Magnetic Bearings for Smart Aero-Engines MagFly, available at: http://www.aerodays2006.org/sessions/D_Sessions/D5/D54.pdf, June 2006.
  18. Zhuravlev Yu.N. Aktivnye magnitnye podshipniki: teoriya, raschet, primenenie (Active magnetic bearings : theory, computation, and application), St. Petersburg, Politekhnika, 2003, 206 p.
  19. Polyakhov N. D., Stotskaya A. D. Nauchnoe priborostroenie, 2012, vol. 22, no. 4, pp. 5-18.
  20. Levin A.V., Alekseev I.I., Kharitonov S.A., Kovalev L.K. Elektricheskii samolet: ot idei do realizatsii (electric aircraft: from concept to implementation engineering), Мoscow, Mashinostroenie, 2010, 288 p.
  21. Zheng K. Dynamics of a radial active magnetic bearing system during maneuvering flight, 2014 2nd International Conference on Mechatronics, Robotics and Automation, ICMRA 2014; Zhuhai; China; 8-9 March 2014, 2014, vol. 536-537, pp. 1321-1325.
  22. Jansen M., Montague G., Provenza A., Palazzolo A. High speed, high temperature, fault tolerant operation of a combination magnetic-hydrostatic bearing rotor support system for turbomachinery, NASA/TM, 2004, available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040050626_2004048920.pdf
  23. Sarychev A.P.Voprosy elektromekhaniki, 2009, vol. 112, pp. 3-10.
  24. SarychevA.P., Spirin A.V. Kompressornaya tekhnika ipnevmatika, 2001, no. 8, pp. 15-18.
  25. Sharp John. Jet Engine With Active-Magnetic Bearing, Patent US № US20100143100 A1, 27.01.2006.
  26. Schweitzer G. Applications and Research Topics for Active, 23-26 March 2009, Indian Institute of Technology, Delhi, India. Springer-Verlag, available at: http://www.mcgs.ch/web-content/Delhi_IUTAM_ Symp.pdf
  27. Iannello V. Sensor-less position detector for foreign patent documents an active magnetic bearing, Patent US 5696412 H02K 7/09, 1997.
  28. Toshimitsu Barada, Toshiya Yoshida Sensorless magnetic bearing apparatus, Patent EP 2 083 183 A2 F16C 32/04, 2009.
  29. Vavilov V., Gerasin A., Ismagilov F., Khayrullin I. An Algorithm for Controlling Hybrid Magnetic Bearings Using the Magnetic Field Pattern, Journal of Computer and Systems Sciences International, 2013, vol. 52, no. 5. pp. 794-799.
  30. Ismagilov F.R., Khairullin I.Kh., Vavilov V.E. Patent RU 2518053 С1, 10.06.2014.
  31. Lawrence A. Hawkins, Lei Zhu Development of a 125 kW AMB Expander,Generator for Waste Heat Recovery/ Lawrence A. Hawkins, Lei Zhu, Journal of Engineering for Gas Turbines and Power, 2011, vol. 133, pp. 85-89.
  32. Jinfang Liu, Heeju Choi, Alan Palazzolo, Randall Tucker, Andrew Kenny, Kyung-Dae Kang, VarunGhandi, and Andrew Provenza High Temperature Hybrid Radial Magnetic Bearing Systems Capable of Operating up to 538°C (1000°F), Original manuscript, Proceedings of 20th International Workshop on rare earth permanent magnets and their applications, 8-10 September 2008, Crete, Greece, pp. 37-45.
  33. John H. Two High-Temperature Foil Journal Bearings. These are prototypes of foil bearings for aircraft gas turbine engines, NASA Tech Briefs, May 2006, pp. 20-21.
  34. Ismagilov F.R., Khairullin I.Kh., Karimov R.D., Pashali D.Yu., Vavilov V.E. Patent RU 131104 U1 F16C, 10.08.2013.
  35. Ismagilov F., Khairullin I., Vavilov V., Gumerova M. Application of hybrid magnetic bearings in aviation starter-generators, International Review of Electrical Engineering, 2014, vol. 9, no. 3, pp. 506-510.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI