Spectral-luminescent properties of CdS nanocomposites in a polymer shell

Metallurgy and Material Science

Material science


Аuthors

Pomogailo D. A.1*, Spirin M. G.2, Skobeeva V. M.3**, Dzhardimalieva G. I.2***, Smyntyna V. A.3****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Institute of Problems of Chemical Physics of the Russian Academy of Sciences, IPCP RAS, 1, Academician Semenov av., Chernogolovka, Moscow region, 142432, Russia
3. Scietific Research Institute of Physics of Odessa National University named after I.I. Mechnikov, 27, Pastera str., Odessa, 65082, Ukraine

*e-mail: dimanpom@bk.ru
**e-mail: v_skobeeva@ukr.net
***e-mail: dzhardim@icp.ac.ru
****e-mail: smyntyna@onu.edu.ua

Abstract

Nanocomposites of different concentration of cadmium sulfides nanoparticles in polyacrylamide shell were obtained as a result of interaction of cadmium nitrate with acrylamide and sulphonating agent (thiourea) in certain stoichiometric ratios and subsequent thermal polymerization of the reaction mixture. The samples were studied using methods of elemental analysis, X-ray diffraction, scanning electron microscopy, optical and fluorescent spectroscopy. The size and distribution of sulfide nanoparticles in polymer were defined. X-ray diffraction analysis of nanocomposites obtained revealed the following reflections at 2Θ: 26.35; 43.85; 51.85 with the values of d equal to 3.357; 2.085; 1.756, characteristic for hexagonal cadmium sulfide with wurtzite structure. Intense broadband at 2Θ = 21 belongs to polyacrylamide. It is characteristic that the intensity of CdS-containing phase peaks decreases with the increase of cadmium sulfide concentration in the composite with a simultaneous increase in the interplanar spacing. It proves nanocrystals binding with a polymer matrix. The average crystallite size (nanoparticles), corresponding to the sizes of coherent scattering of X-rays ranges, were evaluated at the width of the reflections in the diffraction patterns according to Debye-Scherrer formula. Particles size varies within a narrow range of values and ranges from 4 to 15 nm with increasing of the CdS share in the composite. Increasing of the CdS concentration reduces the particles size of the CdS crystallites.

Submicroscopic image of nanocomposites containing different concentrations of cadmium sulfide nanocrystals indicates a noticeable effect of nanoparticles concentration on the surface morphology. That is, increase in the cadmium sulphide concentration leads to an increase in the compactness and structuredness of the composite.

It was shown that the absorption spectra has characteristic features of the spectra of composite systems with nanosized semiconductor crystals, which show «defective» luminescence with maximum in the range of 550–570 nm.

Keywords:

nanocomposites, cadmium sulfide, polyacrylamide shell, frontal polymerization of metal-monomers

References

  1. Kochanov D.I. RITM, 2010, vol. 56, no. 8, pp. 16-21.

  2. Pomogailo A.D., Rozenberg A.S., Uflyand U.E. Nanochastitsy metallov v polimerakh (Metals nanoparticles in polymers), Мoscow, Khimiya, 2000, 671 p.

  3. Maggeramov A.M., Ramazanov M.A., Gadzhieva F.V. Fizika i khimiya obrabotki materialov, 2008, no. 1, pp. 71-74.

  4. Gubin S.P., Kataev N.A., Khomutov G. B. Izvestiya Akademii Nauk. Seriya khimicheskaya, 2005, no. 4, pp. 811-836.

  5. Rogach A.L. Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications, New York, Springer-Verlag, Wien, 2008, 372 p.

  6. Nikolenko L.M., Razumov V.F. Uspekhi khimii, 2013, vol. 82, no. 5, pp. 429-448.

  7. Biryukov A.A., Gotovtseva E.Yu., Izaak T.I., Svetlichnyi V.A. Vestnik Tomskogo gosudarstvennogo universiteta, 2013, no. 375, pp. 194-199.

  8. Bochenkov V.E., Sergeev G.B. Uspekhi khimii, 2007, no. 76 (11), p. 1084.

  9. Pomogailo D.A., Singh S., Singh M., Yadav B.C., Tandon P., Pomogailo S.I., Dzhardimalieva G.I., Kydralieva K.A. Neorganichekie materialy, 2014, vol. 50, no. 3, pp. 320-330.

  10. Fang Yuan, Li Chen, Cai-Feng Wang, Su Chen. Facile synthesis of fluorescent quantum dot-polymer nanocomposites via frontal polymerization. Journal of Polymer Science. Part A: Polymer Chemistry. 2010, vol. 48, issue 10, available at: http://onlinelibrary.wiley.com/doi/10.1002/pola.23986/pdf

  11. Ekimov A.I., Efros A.L., Onushchenko A.A. Quantum size effect in semiconductor microcrystals. Solid State Communication, 1985, vol. 56, no. 11, pp. 921-924.

  12. Kulish N.R., Kunets V.P., Lisitsa M.P., Malysh N.I. Ukrainskii fizicheskii zhurnal, 1992, vol. 37, no. 8, pp. 1141-1146.

  13. Kulish N.R., Kunets V.P., Lisitsa M.P. Fizika tverdogo tela, 1997, vol. 39, no.10, pp. 1865 −1870.

  14. Pucci A., Boccia M., Galembeck F., Paula Leite C.A., Tirelli N., Ruggeri G. Luminescent nanocomposites containing CdS nanoparticles dispersed into vinyl alcohol based polymers. Reactive&Functional Polymers, 2008, vol. 68, pp. 1144-1151.

  15. Chandrasekharan N., Kamat P.V. Tuning the properties of CdSe nanoparticles in reverse micelles. Research on Chemical Intermediates, 2002, vol. 28, no. 7-9, pp. 847-856.

  16. Smyntyna V., Skobeeva V., Malushin N. The nature of emission centers in CdS nanocrystals. Journal of Radiation Measurements, 2007, vol. 42, pp. 693-696.

  17. Smyntyna V.A., Skobeeva V.M., Malushin N.V., Pomogailo A.D. Influence of matrix on photo luminescence of CdS nanocrystals. Photoelectronics. Inter-universities scientific articles, 2006, no. 15, pp. 38-42.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI