Improving accuracy of non-rigid component parts surfaces positional relationship while manufacturing

Machine-building Engineering and Machine Science

Mechanical Engineering Technology


Аuthors

Okunev V. S.

N.A. Pilugin research and production center of automation and instrumentation, 1, Vvedenskogo str., Moscow, 117342, Russia

e-mail: mainrefer@yandex.ru

Abstract

The article touches upon the methods allowing increase the precision of non-rigid cylindrical parts processing.

When producing non-rigid component parts, the work pieces processed surfaces deformations subjected to the forces are scaled to machining tolerance values, which leads to the occurrence of processing errors related to it.

The article tackles the issues of finding deformations of non-rigid work pieces walls during mechanical processing, depending on cutting operating conditions, to optimize the manufacturing process and enhance accuracy.

We suggest calculate the work pieces surfaces deformation under the impact of the cutting force by using the finite-element method and the elasticity theory provisions.

As a check on the possibility of using the finite-element method to calculate deformations while processing non-rigid cylindrical work pieces, it is necessary to have an analytical checking solution. We examined such solution based in the general thin-walled shells design theory.

The paper consists of three main sections.

The first section presents a detailed calculation of deformation due to cutting force impact while non-rigid cylindrical work pieces processing according to the general thin-walled shells design theory by the example of a thin-walled cylinder. The necessary reference data to determine cutting operating conditions are included.

The second section deals with the calculations based on the finite-element method. It gives appropriate recommendations to improve thin-walled parts computational accuracy and demonstrates the graphic solution results obtained with Abaqus and Ansys programs. This section considers the selection of finite elements for thin-walled machine parts calculation as well.

The calculation results are compared with the results obtained by the exact analytical solution.

This section considers the possibilities of calculations based on contact method of cutting force estimation and other cutting parameters with Abaqus and Ansys program module. A conclusion on poor computation accuracy and impossibility of its implementation for the problem under consideration solving was made.

The paper gives recommendation, allowing correction of technological process parameters at the stage of process design, with due regard for non-rigid work pieces processing errors due to their surfaces deformation caused by cutting force. It considers the possibilities of the presented computations automation based on the finite elements method for various kinds of geometry and design features of component parts.

Keywords:

non-rigid component part, deformation, machining error accuracy, simulation with CAE Ansys, elastic deformation, moment theory of thin-walled shells, finite element method

References

  1. Feodos’ev V.I. Soprotivlenie materialov (Strength of materials), Moscow, MGTU im. N.E. Baumana, 2010, 590 p.

  2. Baranovskii Yu.V., Brakhman L.A. Rezhimy rezaniya metallov (Cutting parameters of metals), Moscow, NIITavtoprom, 1995, 456 p.

  3. Bogdanov V.R., Sulim G.T. Mekhanika tverdogo tela, 2013, no. 3, pp. 115-119.

  4. Yakupov N.M., Galyaviev Sh.Sh., Khisamov R.Z. Vestnik Rossiiskogo universiteta druzhby narodov, 2002, no. 1, pp. 27-31.

  5. Senyukov V.A., Kiselev A.S. Izvestiya vuzov. Mashinostroenie, 1983, no. 12, pp. 116-119.

  6. Kosilova A.G., Meshcheryakov R.K. Spravochnik tekhnologa-mashinostroitelya (Handbook technologist-Machinist), Moscow, Mashinostroenie, 1985/1986, vol. 1 — 657 p., vol. 2 — 496 p.

  7. Khairnasov K.Z. Vestnik Moskovskogo aviatsionnogo instituta, 2013, vol. 20, no. 5, pp. 96-104.

  8. Shimanovskii A.O. Primenenie metoda konechnykh elementov v reshenii zadach prikladnoi mekhaniki (Application of the finite element method in solving problems of applied mechanics), Gomel’, BelGUT, 2008, 61 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI