Promising energy accumulators - supercapacitors: operation principle and implementation for aerospace engineering

Electrical Engineering

Power Electronics


Аuthors

Bibikov S. В.1*, Maltsev A. A.1**, Koshelev B. V.***, Zudov K. A.2****, Kudrov M. A.2*****

1. Institute of Biochemical Physics, Russian Academy of Sciences, 4, Kosygina str., Moscow, 119334, Russia
2. Moscow Institute of Physics and Technology (State University) (MIPT), 16, Gagarin St., Zhukovsky,140180, Russia

*e-mail: sbb.12@yandex.ru
**e-mail: aam.0205@yandex.ru
***e-mail: borisko47@yandex.ru
****e-mail: xzudov@mail.ru
*****e-mail: mkudrov@phystech.edu

Abstract

The purpose of the paper is to disclose the potentialities for improvements of supercapacitors, or so called ionistors, characteristics — one of the most promising types of energy storage devices along with expansion of their implementation area in aerospace engineering.

Based on the analysis of the theoretical and experimental research results published by the developers in this area, as well as original studies, the authors present several ways of improvement of supercapacitor characteristics, first of all, their charge capacity and accumulated energy. It is proposed in particular to optimize the structure and the material of the electrode. For electrodes based on nanodispersed layered graphite structures the authors show the necessity and possibility of the availability of nanoporous electrode surface for electrolyte ions consideration.

Another approach for increasing capacitance is a rational choice of an electrolyte. Different variants of aqueous and non-aqueous electrolytes, as well as solid electrolyte are analyzed in the paper. Advantages and drawbacks of various types of electrolytes are shown. To increase the energy accumulated by ionistors as well as extend the voltage range it is proposed to use non-aqueous electrolytes and create «nonsymmetrical» ionistors with redox process involved. Experimental testing of identical supercapacitor cells with different electrolyte solutions and their mixtures showed that the mixture of acetonitrile and ethylene-carbonate provided the best set of supercapacitor parameters (specific capacitance, self-discharge resistance and series resistance).

The authors carried out additional testing of supercapacitor cells of various constructions with standard domestic electrodes and electrolytes to evaluate the rate of degradation process. Supercapacitors with multilayer axial structure demonstrated the highest parameter stability.

Comparative analysis of superacapacitors characteristics produced by Russian and foreign manufacturers was carried out.

Possible areas of supercapacitor implementation in aerospace engineering were studied with allowance for the peculiarities of their characteristics (high specific power and relatively small discharge time).

Supercapacitors can be effectively used for various short-term power applications, drives, etc. in combination with other power sources. We suppose that developing power sources for unmanned aerial vehicles can be the most efficient area of implementation of superconductors.

Keywords:

supercapacitor, ionistor, graphene, energy accumulator, unmanned aerial vehicles

References

  1. Biao Zhang, Qing Bin Zheng, Zhen Dong Huang, Sei Woon Oh, and Jang Kyo Kim. SnO2-graphene-carbon nanotube mixture for anode material with improved rate capacities. Carbon, 2011, vol. 49, no.13, pp. 4524-4524.

  2. Deng M.J., Chang J.K., Wang C.C., Chen K.W., Lin C.M., Tang M.T., Chen J.M., Lu K.T. High-Performance electrochemical pseudo-capacitor based on MnO2 nanowires/Ni foam as electrode with a novel Li-ion quasi-ionic liquid as electrolyte. Energy & Environmental Science, 2011, vol. 4, pp. 3942-3946.

  3. Yu Guihua, Hu Liangbing, Liu Nian, Wang Huiliang, Vosgueritchian Michael, Yang Yuan, Cui Yi & Bao Zhenan. Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping. Nano Letters, 2001, vol. 11, no. 10, pp. 4438 – 4442.

  4. Salem R.R. Teoriya dvoinogo sloya (Theory of Double Layer), Moscow, Fizmatlit, 2003, 105 p.

  5. Ji Hengxing, Zhao Xin, Qiao Zhenhua, Jung Jeil, Zhu Yanwu, Lu Yalin, Zhang Li, MacDonald A.H. & Ruoff R.S. Capacitance of carbon-based electrical double-layer capacitors. Nature Communications, 2014, vol. 5, available at: http://www.nature.com/naturecommunications

  6. Huang Jingsong, Sumpter Bobby G., Meunier Vincent. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chemistry. A European Journal, 2008, vol. 14, no. 22, pp. 6614-6626.

  7. Metody opredeleniya udelnoi poverkhnosti. GOST 13144-79 (Methods of Determination of Specific Surface. State Standard 13144-79). Moscow. Standarty, 1999, available at: http://www.gosthelp.ru/gost/gost14517.html

  8. Pandey G.P., Rastogi A.C. Graphene-based all-solid- state supercapacitor with ionic liquid gel polymer electrolyte. MRS Proceedings, 2012, vol. 1440, available at: http://dx.doi.org/10.1557/opl.2012.1279

  9. Gao Han and Lian Keryn. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Advances, 2014, vol. 4, pp. 33091-33113.

  10. Placin F., Desvergne J.-P., and Lassegues J.-C. Organogel electrolytes based on a low molecular weight gelator: 2,3-Bis(n-decyloxy) anthracene. Chemistry Materials, 2001, vol. 13, pp. 117-121.

  11. Domrachev G.A., Rodygin Yu.L., Selivanovskii D.A. Doklady Akademii nauk, 1993, vol. 329(2), no. 2, pp.186-188.

  12. Kloss A.I. Doklady Akademii nauk SSSR, 1988, vol. 303, no. 6, pp. 1403-1406.

  13. Yoo Jung, Balakrishnan K., Huang J., Meunier V., Sumpter B.G., Srivastava A., Conway M., Reddy A.L., Yu Jin, Vajtai R., and Ajayan P.M. Ultrathin planar graphene supercapacitors. Nano Letters, 2011, vol. 11, no. 4, pp. 1423 – 1427.

  14. Wang Hailiang, Liang Yongye, Mirfakhrai Tissaphern, Chen Zhuo, Casalongue Hernan Sanchez, Dai Hongjie. Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials. Nano Research, 2011, vol. 4, issue 8, pp. 729 – 736.

  15. Weijiang Xiaozhong Wu, Jin Zhou, Feifei Guo, Shuping Zhuo, Hongyou Cui and Wei Xing. Reduced grapheme oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes. Nanoscale Research Letters, 2013, vol. 8, no. 247, available at: http://www.nanoscalereslett.com/content/8/1/247

  16. Molekulyarnye nakopiteli energii, available at: http://texnokor.com/mne.php

  17. VSKB Rikon, available at: http://www.uav.ru/articles/mav_abroad.pdf

  18. Chernozhuk T.V., Dubovitskaya V.Yu., Kalugin O.N. Vestnik Kharkovskogo natsionalnogo universiteta, 2009, no. 870, issue 17(40), pp. 189 – 193.

  19. Despotuli A.L., Andreeva A.V. Mikrosistemnaya tekhnika, 2003, no. 11, pp. 2 – 10.

  20. Fetisov V.S., Tagirov M.I., Mukhametzyanova A.I. Aviakosmicheskoe priborostroenie, 2013, no. 11, pp. 7 – 26.

  21. Popov V.A., Fedutinov D.V. Razvitie napravleniya miniatyurnykh bespilotnykh letatelnykh apparatov za rubezhom, 2013, available at: http://www.uav.ru/articles/mav_abroad.pdf

  22. Јukasz Mкїyk , Јukasz Boruc, Arkadiusz Kobiera, Jan Kindracki, Karol Seweryn, Tomasz Rybus. Innovative Resistojet Propulsion System Use in Robotic Space Platforms. Aerospace Robotics II. Springer International Publishing, 2015, pp. 49 — 58.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI