Parameters selection of solar thermal rocket engine under flight time limitation

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Finogenov S. L.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: sfmai2015@mail.ru

Abstract

Solar thermal propulsion (STP) is considered as means of inter-orbital transportation from low Earth orbit into geostationary orbit. The payload insertion time for conventional STP usually equals approximately 60 days. STP contains high-temperature concentrator-absorber system (CAS) as a power source, with possibility of using multi-staged absorber of non-isothermal type with higher optical-power efficiency. Ballistic efficiency of the upper stage with STP grows with the increase of extent of CAS not-isothermal properties and can exceed 1.5-2 times the efficiency of liquid propellant rocket engines (LRE).

Ballistic efficiency of upper stage with the STP is determined by relevant parameters of the CAS, to which we can assign concentrator accuracy parameter and hydrogen heating temperature in CAS, as well as permissive conditions of CAS's sun orientation. Selection of CAS expedient parameters can be realized, in some cases, different from those optimal with allowance for technological limitations under permissible reduction of ballistic efficiency of solar upper stage compared to LRE implementation case.

Considering that transportation system, employing combination of high and low thrust engines with adequate insertion time of 60-120 days may compete with STP as inter-orbital transportation system, it is expedient to estimate the ballistic efficiency of solar upper stage at lower flight time. The problem simulation demonstrates the capability of reducing the payload injection time to 20...40 days at high ballistic efficiency of solar upper stage (in case of extreme non-isothermal multi-staged CAS, the payload mass is twice higher compared to LRE). STP optimal relevant parameters herewith change towards CAS simplification. The CAS Sun tracking conditions also become simpler.

STP optimal parameter values for various time intervals of inter-orbital transfer are presented. The possibility of providing high ballistic efficiency at the flight time of 20-40 days with STP implementation with non-isothermal multi-staged CAS, compared to the transportation system employing combination of engines of large and low thrust, is shown.

Keywords:

solar thermal propulsion, flight time, geostationary orbit, ballistic efficiency

References

  1. Gal’kevich I.A. Razrabotka instrumentariya opredeleniya tekhniko-ekonomicheskikh parametrov kosmicheskikh telekommunikatsionnykh proektov (Development of instrumentation for technical-economical space telecommunication projects definition). Doctor’s thesis, Moscow, MGTU named after N.E. Bauman, 2015, 282 p.

  2. Kudrin O.I. Solnechnye vysokotemperaturnye kosmicheskie energodvigatelnye ustanovki (High-temperature space solar power plants), Moscow, Mashinostroenie, 1987, 247 p.

  3. Grilihes V.A., Matveev V.M., Poluektov V.P. Solnechnye vysokotemperaturnye istochniki tepla dlya kosmicheskikh apparatov (High-temperature solar heat sources for space vehicles), Moscow, Mashinostroenie, 1975, 248 p.

  4. Orbit-raising and maneuvering propulsion: research status and needs. Edited by Leonard H. Caveny. Progress in Astronautics and Aeronautics. Published by American Institute of Aeronautics and Astronautics, New York, 1988, vol. 89, 454 p.

  5. Koroteev A.S. Vestnik Moskovskogo aviatsionnogo instituta, 2000, vol. 7, no.1, pp. 60-67.

  6. Frye P.E., Kennedy F.G. Reusable Orbital Transfer Vehicles (ROTV) Applications of an Integrated Solar Upper Stage (ISUS). American Institute of Aeronautics and Astronautics. AIAA/ASME/SAE/ASEE, 33rd Joint Propulsion Conference, Seattle, WA, July 69, 1997, no. 97-2981.

  7. Grossman G., Williams G. Inflatable Concentrators for Solar Propulsion and Dynamic Space Power. Journal of Solar Energy Engineering, November 1990, vol. 112, pp. 229-236.

  8. Boikachev V.N., Gusev Yu.G., Zhasan V.S., Kim V.P., Martynov M.B., Murashko V.M., Nesterin I.M., Pil’nikov A.V., Popov G.A. Kosmicheskaya tekhnika i tekhnologii, 2014, no.1(4), pp. 48-59.

  9. Belik A.A., Egorov Yu.G., Kul’kov V.M., Obukhov V.A. Aviatsionnaya tekhnika i technologiya, 2011, no. 4(81), pp. 17-21.

  10. Kudrin O.I., Finogenov S.L. Polet, 2000, no. 6, pp. 37-41.

  11. Kvasnikov A.V., Kudrin O.I., Mel’nikov M.V. Doklady Vsesoyuznoj konferentsii po ispolzovaniyu solnechnoj energii, Moscow, VNIIT, 1969, pp. 297-343.

  12. Finogenov S.L., Kudrin O.I. Sistemnyi analiz v tekhnike. Tematicheskii sbornik nauchnykh trudov, 2005, issue 8, Moscow, Vuzovskaya kniga, pp. 36-80.

  13. Safranovich V.F., Emdin L.M. Marshevye dvigateli kosmicheskikh apparatov. Vybor tipa i parametrov (Sustainer engines for space vehicles. Choice of type and parameters), Moscow, Mashinostroenie, 1980, 240 p.

  14. Rubanovich I.M. Geliotekhnika, 1966, no. 4, pp. 44-49.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI