Film structure of aluminum-silicon alloy obtained by physical magnetron sputtering

Metallurgy and Material Science

Material science


Аuthors

Didyk P. I.*, Golikov E. A., Zhukov A. A.**

,

*e-mail: Felix_engine@mail.ru
**e-mail: and_zhukov@mail.ru

Abstract

Film structure of aluminum-silicon alloy (99% Al and 1% Si) obtained by physical magnetron sputtering was studied by electron microscopy and profilometry. The values of average aluminum-silicon alloy films with varying sputtering power, sputtering time and metal coating thickness were studied and obtained.

With equal aluminum-silicon alloy films thickness, the sputtering time decrease results in alloy grains average size and quantity reduction. With power increase and sputtering time approximately twofold decrease the average grain size and number of grains per square millimeter decrease proportionally. The obtained grains size depends weakly on sputtering power and stays within the range of 290-330 nm with ± 7% precision.

The average film grains size of aluminum-silicon alloy increases non-linearly approximately 25 times (from 20 nm to 500 nm) with film thickness of aluminum-silicon alloy increase from 0.2 mcm to 1.2 mcm due to sputtering time increase, which probably can be explained by substrate temperature rising due to of aluminum-silicon alloy condensation. The substrate temperature rise results in grain size increase.

The grain size and their quantity are practically independent from sputtering power, but they depend on time of continuous residing in plasma burning zone and plates cooling efficiency. In vacuum, the plates surface has no time for cooling in the process of deposition, which leads to excessive ions mobility of sputtered material, grains formation and growth. The more time the plates reside in plasma burning zone, the higher the intensity of grains growth.

Keywords:

aluminum-silicon alloy films structure, grain size at varying sputtering modes

References

  1. Einspruch N.G., Brown D.M. (Eds.) VLSI Electronics: Microstructure Science. Academic Press, Orlando, FL, 1984, vol. 8 “Plasma Processing for VLSI”, 527 p.

  2. Shiuh-Chuan Her, Yi-Hsiang Wang. Temperature effect on microstructure and mechanical properties of aluminum film deposited on glass substrates. Indian Journal of Engineering and materials sciences. June 2015, vol. 22, pp. 268-272.

  3. Ishiguro Takashi, Miyamura Kazumi. Controllability of Mesoscopic Surface Roughness of Sputtered Al and Al – N Films. Materials Transactions, 2005, vol. 46, no. 12, pp. 3037-3043.

  4. Antonenko S.V. Tekhnologiya tonkikh plenok (Thin films technology), Moscow, MIFI, 2008, 104 p.

  5. Dubrovskiy V.G., Tsirlin G.E. Fizika i tekhnika poluprovodnikov, 2005, vol. 39, no. 11, рp. 1312-1319.

  6. Mayssela L., Glang R. Technologiya tonkikh plenok (Thin films technology), Moscow, Sovetskoe radio, 1977, vol. 1 — 664 p., vol. 2 — 770 p.

  7. Chopra K.L., Kainthla R.C., Pandya D.K., Thakoor A.P. Physics of Thin Films, Academic press, London, 1982, vol. 12, 167 p.

  8. Kolomentsev A.I., Zakharov S.A., Yakutin A.V. Vestnik Moskovskogo aviatsionnogo instituta, 2007, vol. 14, no. 3, pp. 41-47.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI