LPRE control algorithm based on computational-experimental mathematical model using check and proof test results

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Kamenskii S. S.

NPO Energomash named after academician V.P. Glushko, 1, Burdenko str., Khimki, 141400, Russia

e-mail: sskam2009@yandex.ru

Abstract

The purpose of this work consisted in determining the type and functional content of the dependencies, constituting the two-component LPRE control algorithm and obtaining formal description of these dependencies for further use of this algorithm while implementing the engine as a part of a launcher during the flight.

It is shown that the task of maintaining the specified for flight conditions engine thrust level values R and mixture components ratio Km are clearly described by specifying functions of regulator assembly drives position in relation to the six parameters: R, Km and four conditions at the engine inlet (temperature and fuel components pressure).

This conclusion was drawn by analyzing the structure and functional dependencies of LPRE mathematical model. It was successfully proved by determining such dependencies using adequate fire tests results of a given single-chamber LPRE approximation.

To determine control algorithm for LPRE, undergone hot testing, the author suggested implementation of computational-experimental model (CEM), formed according to the results of this engine hot testing.

The properties of such model allow carrying out reliable forecast computations of the engine operating procedures parameters in a wide range of the six parameters under consideration, namely operating modes and ambient conditions.

The final form of control algorithm represents a polynomial, approximating computation results based on CEM, carried out over six-dimensional array of computed points, defined within the required engine operation range.

The adequacy of the proposed approach to the control algorithm formulation in the wide range of all six parameters is validated by comparing the values obtained by approximation with experimental data of a given single-chamber LPRE.

Keywords:

LPRE, control algorithm, calculation-experimental model, mathematical modeling, computed data approximation

References

  1. Babkin A.I., Belov S.I., Rutovskii N.B., Solov'ev E.V. Osnovy teorii avtomaticheskogo upravleniya raketnymi dvigatel'nymi ustanovkami Fundamentals of rocket propulsion units automatic control theory), Moscow, Mashinostroenie, 1986, 456 p.

  2. Glikman B.F. Teoriya avtomaticheskogo regulirovaniya zhidkostnymi raketnymi dvigatelyami (Theory of liquid rocket engines automatic control), Moscow, Mashinostroenie, 1989, 296 p.

  3. Kolbasenkov A.I., Kravchenko L.Ya., Semenov V.I., Storozhenko I.G., Chelkis F.Yu., Chernykh V.I. Trudy NPO Energomash. Sbornik statei, Moscow, 2002, vol. 20, pp. 276-286.

  4. Barbot'ko L.N., Martirosov D.S. Trudy NPO Energomash. Sbornik statei, Moscow, 2003, vol. 21, pp. 91-104.

  5. Martirosov D.S. Diagnostirovanie slozhnykh tekhnicheskikh sistem na osnove matematicheskikh modelei i izmeryaemykh parametrov metodom strukturnogo isklyucheniya (Diagnosis of complex technical systems based of mathematical models and measured parameters by the method of structural exclusion), Moscow, MAI, 1998, 49 p.

  6. Kolomentsev A.I., Martirosov D.S. Metody funktsional'noi diagnostiki DLA (Methods of DLA functional diagnostics), Moscow, MAI, 2000, 36 p.

  7. Bukanov V.T., Kamenskii S.S., Martirosov D.S. Trudy NPO Energomash. Sbornik statei, Moscow, 2015, vol. 32, pp. 91-99.

  8. Kamenskii S.S., Martirosov D.S., Kolomentsev A.I. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 1, pp. 32-37.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI