On effect of electrical charge on fuel drops surface tension at the atomizer outlet

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Kolodyazhnyi D. Y.1, Nagornyi V. S.2*, Smirnovskii A. A.2

1. United shipbuilding Corporation, 90, Marata str., St. Petersburg, 191119, Russia
2. Peter the Great Saint-Petersburg Polytechnic University, 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia

*e-mail: nagorny.vladim@yandex.ru

Abstract

High-speed transport design, aircraft engines ecology and higher energy efficiency guarantee by improving fuel atomization and air-kerosene mixture quality in aircraft engines intensive research is carried out. To improve fuel atomization and air-kerosene mixture burning we suggest the use properly shaped electric fields in atomizer fuel supplying contours. For the first time the authors studied the effect of variable frequency AC electric field on combustion products chemical composition, when employing kerosene TS-1. Experimental results on the effect of variable frequency AC electric field on air-kerosene mixture combustion products burning rate were presented for the first time.

Post-combustion flow speed measuring at the simulative combustion chamber outlet were carried out at Samara State Aero-space University (SSAU).

Air-fuel mixture combustion products burning speed experimental determination technique was developed at SSAU. It forms the basis of the research on the effect of AC electric field on air-kerosene combustion mixture products speeds.

Employing the speed measuring data, computations of superficial velocity and mass flow ratio were carried out using well-known equations for gas-dynamic functions.

The result of experimentation consists in creating Microsoft Access database file with further possible export to Excel.

Experimental studies were carried out at SSAU on a single-burner bay of a simulative combustion chamber with operational OJSC “Klimov” duplex nozzle for liquid fuel. We employed a swirler with blades angle φ = 72°10′; gas collector with cone outlet diameter of 133 mm; square spacer plate with square cross-section shaped with square side of 180 mm and a baseline case of offset area holes, when mixer apertures were open. Kerosene TS-1 was used as fuel. Low-pressure compressed air was fed under pressure ≤ 0.75 MPa, and solid tracing particles were used for laser measurements of Ch-4 type.

When the AC electric field was applied to kerosene along each diameter, prior to feeding to atomizer, speed values move intermittently up and down. With this, air-kerosene mixture combustion products maximum relative speed reduction was 2.45%, while maximum relative speed of air-kerosene mixture combustion products with applied to kerosene flow AC electric field at the outlet of combustion chamber was 1.425.

Keywords:

electric charge, fuel drop, surface tension, atomizer

References

  1. Aviatsionnye pravila, chast' 34. Okhrana okruzhayushchei sredy. Emissiya zagryaznyayushchikh veshchestv aviatsionnymi dvigatelyami. Normy i ispytaniya (Aviation rules, part 34. Preservation of the environment. Issue of polluting substances by aviation engines. Norms and tests), Moscow, Aviaizdat, 2003, 84 p.

  2. Okhrana okruzhayushchei sredy. Prilozhenie 16 k konventsii o Mezhdunarodnoi grazhdanskoi aviatsii (Preservation of the environment. Appendix 16 to the convention on the International civil aircraft). Montreal, Quebec, Canada, Mezhdunarodnaya organizatsiya grazhdanskoi aviatsii, 2008, vol. II, 118 p.

  3. Murase Isao, Moriyama Akinobu, Meroji Nakai. A Portable Fast Response Air-Fuel Ratio Meter Using an Extended Range Oxygen Sensor. SAE Technical Paper Series, 1988, no. 880559, pp. 121-130.

  4. Gerlovin I.L. Osnovy edinoi teorii vsekh vzaimodeistvii v veshchestve (Uniform theory of all interactions in substance basics), Leningrad, Energoatomizdat, 1990, 431 p.

  5. Nagornyi V.S., Kolodyazhnyi D.Yu. Materialy Mezhdunarodnogo foruma “Krym Hi-Tech- 2014”, 25-27.09.2014, Sevastopol, pp. 246-248.

  6. Zvonov V.A., Makarov N.A. Dvigateli vnutrennego sgoraniya, 2008, no. 2, pp. 112-121.

  7. Tao R., Du E., Tang H., Xu X. Neutron scattering studies of crude oil viscosity reduction with electric field. Fuel, 2014, vol. 134, pp. 493 — 498.

  8. Du E., Tang H., Huang K., Tao R. Reducing the Viscosity of Diesel Fuel with Electrorheological Effect. Journal of Intelligent Material Systems and Structures, 2011, vol. 22, no. 15, pp. 1713 — 1716.

  9. Tao R. The Physical Mechanism to Reduce Viscosity of Liquid Suspensions. International Journal of Modern Physics B, 2007, vol. 21, pp. 4767 — 4773.

  10. Revzin I.S. Avtomobil'naya promyshlennost', 1980, no. 1, pp. 5-7.

  11. Nagornyi V.S., Smirnovskii A.A., Chernyshev A.S., Kolodyazhnyi D.Yu. Pisma v ZhTF, 2015, vol. 41, issue 17, pp. 94-102.

  12. Nagorniy V. S., Smirnovsky A.A., Tchernysheff A.S., Kolodyazhny D.Yu. Numerical simulation of the flow in the fuel injector in the sharply inhomogeneous electric field. Procedia Computer Science, 2015, vol. 51, pp. 1219-1228.

  13. Nagornyi V.S., Smirnovskii A.A., Chernyshev A.S., Kolodyazhnyi D.Yu. Materialy ХI Mezhdunarodnoi nauchnoi konferentsii “Sovremennye problemy elektrofiziki i elektrogidrodinamiki” (29.06.-03.07.2015, Petergof), St. Petersburg, Petrogradskii, 2015, pp. 94-97.

  14. 14. Nagornyi V.S. Elektrokaplestruinye registriruyushchie ustroistva (Electric-drip-jet recorders), Leningrad, Mashinostroenie, 1988, 269 p.

  15. Nagornyi V.S. Sredstva avtomatiki gidro – i pnevmosistem (Automation equipment for hydraulic and pneumatic systems), St. Petersburg, Moscow, Krasnodar, Lan', 2014, 448 p.

  16. Nagornyi V.S. Elektroflyuidnye preobrazovateli (Electro-fluid converters), Leningrad, Sudostroenie, 1987, 251 p.

  17. Denisov A.A., Nagornyi V.S. Elektrogidro- I elektrogazodinamicheskie ustroistva avtomatiki (Electro- hydro and electro-gas-dynamic automation devices), Leningrad, Mashinostroenie, 1979, 288 p.

  18. 18. Nagorniy V.S. Parameter of EHD-Interaction and efficiency Electrohydro(gas) dynamic Control of Flows and Jets of Dielectric Liquids and Gas. International Symposium on Electrohydrodynamics (2014. June 23-26). Japan Okinawa, 2014, 5 p. Book of Abstracts, p. 49.

  19. Ono S., Kondo S. Molekulyarnaya teoriya poverkhnostnogo natyazheniya v zhidkostyakh (Molecular theory of surface tension in liquids), Moscow, IL, 1963, 290 p.

  20. Rusanov A.I., Kuz'min V.L. Kolloidnyi zhurnal, 1977, vol. 39, no. 2, pp. 388-390.

  21. Rusanov A.I. Doklady AN SSSR, 1978, vol. 238, no. 4, pp. 831-834.

  22. Efimov N.A. Vliyanie elektricheskoi obrabotki svezhego zaryada na pokazateli rabochego protsessa karbyuratornogo dvigatelya (Inlet gas electric processing effect on carburetor engine working process parameters). Doctor's thesis, Voroshilovgrad, VMI, 1984, 212 p.

  23. Efimov H.A., Zvonov V.A., Efimova L.Ya. Elektronnaya obrabotka materialov, 1979, no. 1, pp. 45-47.

  24. Efimov N.A., Zvonov V.A., Krasnosel'skii A.M. Dvigateli vnutrennego sgoraniya. Sbornik statei, Kharkov, KhGU, 1978, release 27, pp. 40-46.

  25. Kim Y.-J., Ko H.S. Numerical and Experimental Analysis of Electrostatic Ejection of Liquid Droplets. Journal of Korean Physical Society, 2007, vol. 51, pp. 42-46.

  26. Weon B.M., Je J.H. Ionization-induced surface tension reduction of water droplets. Applied Physics Letters, 2008, vol. 93, no. 24. p. 244105.

  27. Lima E.R.A., de Melo B.M., Baptista L.T., Paredes M.L.L. Specific ion effects on the interfacial tension of water/hydrocarbon systems. Brazilian Journal of Chemical Engineering, 2013, vol. 30, no. 1, pp. 5562.

  28. Revzin I.S. Elektronnaya obrabotka materialov, 1978, no. 6, pp. 51-53.

  29. Santos L.P., Ducati T.R.D., Balestrin L.B.S. and Galembeck F. Water with Excess Electric Charge. Journal of Physical Chemistry C, 2011, vol. 115, no. 22, pp. 11226 — 11232.

  30. Shrimpton J.S. Dielectric charged drop break-up at sub- Rayleigh limit conditions. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, vol. 12, no. 3, pp. 573 — 578.

  31. Schmid G.M., Hurd R.M. & Snavely E.S. Effect of electrostatic field on the surface tension of salt solution. Journal of the Electrochemical Society. 1962, vol. 109, issue 9, pp. 852-858.

  32. Sato M., Kudo N. & Saito N. Surface tension reduction of liquid by applied electric field using vibrating jet method. IEEE Transactions on Industry Applications, 1998, vol. 34, no. 2, pp. 294-300.

  33. Ahern J.C., Balachandran W. Experimental electrohydrodynamic nanospray production using drawn glass capillaries. Particulate Science and Technology, 2006, vol. 24, issue 3, pp. 271-280.

  34. Kopeikina E.K. Elektronnaya obrabotka materialov, 1970, no. 4, pp. 57-59.

  35. Revzin I.O. Elektronnaya obrabotka materialov, 1975, no. 3, pp. 28-30.

  36. Bostrоm M., Williams D. R. M. and Ninham B.W. Surface Tension of Electrolytes: Specific Ion Effects Explained by Dispersion Forces. Langmuir, 2001, vol. 17, no. 15, pp. 4475 — 4478.

  37. Salimov A.U. Voprosy teorii elektrostaticheskogo raspylivaniya zhidkostei i intensifikatsiya protsessov sgoraniya zhidkikh topliv v teplovykh dvigatelyakh (Electrostatic liquids atomizing theory issues and liquid fuels combustion processes intensification in thermal engines). Doctor's thesis, Moscow, MADI, 1977, 48 p.

  38. Salimov A.U., Balabekov M.T., Mambetov D.G., Akbarov M.M. Izvestiya Akademii nauk Uzbekskoi SSR. Seriya Tekhnicheskaya, 1977, no. 2, pp. 30 — 31.

  39. Salimov A.U., Balabekov M.T., Mambetov D.G., Akbarov M.M., Urazbaev Sh.Sh. Izvestiya Akademii nauk Uzbekskoi SSR. Seriya Tekhnicheskaya, 1971, no. 2, pp. 41 — 43.

  40. Nagornyi V.S., Kolodyazhnyi D.Yu. Materialy XVII Mezhdunarodnoi nauchno-prakticheskoi konferentsii ŒSistemnyi analiz v proektirovanii i upravlenii ”. St. Petersburg, Politekhnicheskii universitet, 2013, ch. 2, pp. 136-138.

  41. Tamm I. E. Osnovy teorii elektrichestva (Electricity theory fundamentals), Moscow, Fizmatlit, 2003, 616 p.

  42. Kolodyazhnyi D.Yu., Nagornyi V.S. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 1, pp. 56-67.

  43. Kolodyazhnyi D.Yu., Nagornyi V.S. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 4, pp. 67-74.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI