Combined system for electric power consumers protection against emergency states

Electrical Engineering

Electrical engineering complexes and systems


Аuthors

Kuznetsov P. A.*, Stepanov O. A.**

Rybinsk State Aviation Technical University named after P.A. Soloviev, RSATU, 53, Pushkin St., Rybinsk, Yaroslavl region, 152934, Russia

*e-mail: kuznetsovpavel@inbox.ru
**e-mail: azratael@gmail.com

Abstract

The main issue of this article consists in analyzing the main electric network emergency states and to designing a protective system model, which is able to minimize or fully avoid their aftermath.

The results of failures analysis at various power plants and installations allowed separate out the basic types of emergency operating modes. They include sudden voltage dropouts, voltage waveform fluctuations (flickering), rolling blackouts and presence of significant reactive power abundance in a power grid. The rolling blackout presents the greatest danger due to its aftermath. The analysis of emergency modes occurrence revealed that most commonly they arise due to insignificant event, leading to avalanche-type emergency growth. This fact is reflected in the presented algorithm. Moreover, most commonly, these emergencies can be eliminated with the timely reaction of the personnel. However, as the practice indicates, these specified nonsignificant factors were ignored by maintenance staff.

Two-level of consumers' complex protection model for emergency elimination and its aftermath mitigation is suggested. Both parts are autonomous and can be set separately, or in conjunction. The first part of the system is responsible for the reactive power compensation in the power grid. It differs from the existing prototypes by smaller size, cost and asymmetric structure for reactive power compensation in wide range. The paper presents voltage and power balance graphs at the object before and after compensation. The presented data proves that implementation of such installations allows reduce rolling blackout occurrence probability.

The second part of the system represents from rolling blackout protection controller, which, in case of any power grid section overload, or voltage dropout, analyses the states of consumers and turns off those of lower priority. This helps avoiding entire system cascaded failure occurrence.

The presented system both as a whole and in separate parts presents interest for industrial electric energy consumers from the viewpoint of spoilage minimization occurring due to power grid failures.

Keywords:

rolling blackout, reactive power, reactive power compensation system, power grid protection

References

  1. Kobets B.B., Volkova I.O. Innovatsionnoe razvitie elektroenergetiki na baze kontseptsii Smart Grid (Innovative development of power engineering based on Smart Grid conception), Moscow, IATs Energiya, 2010, 208 p.

  2. Department of Energy USA, 2013, available at: http://www.energy.gov/statistics

  3. World Energy Outlook 2015. International Energy Agency (IEA), Paris, 2015, 15 p.

  4. BP Energy Outlook, 2016 Edition. British Petroleum, London, 2016, 80 p., available at: http://www.bp.com/en/global/corporate/energy-economics/energy-outlook-2035.html

  5. Pouyan Pourbeik, Kundur Prabha S. and Taylor Carson W. The anatomy of a power grid blackout. IEEE Power and Energy Magazine 4.5, 2006, pp. 22-29.

  6. Blumschein J., Yelgin Y., Kereit M. Blackout Prevention by Power Swing Detection and Out-of-Step Protection. Journal of Power and Energy Engineering (JPEE), Irvine CA, 2014, pp. 694-703.

  7. Friew Gebremedhin Abraha Statistics of Electric Power Blackouts: Data Analysis and Data Modelling. Norwegian, Univecity of Science and Technology, Trondheim, 2013, 71 p.

  8. North American Electric Reliability Council (NERC). Technical Analysis of the August 14, 2003, Blackout: What Happened, Why, and What Did We Learn? Report to the NERC Board of Trusteeth by the NERC Steering Group, New Jersey, 2004, 124 р.

  9. Kuznetsov P.A., Stepanov O.A., Yudin A.V. Materialy mezhdunarodnogo foruma-konkursa molodykh uchenykh “Problemy nedropol” zovaniya”. St. Peterburg, 2016, chast II, pp. 161163 (247 p.).

  10. Kuznetsov P.A., Pikhno E.V., Yudin A.V. Materialy XLII Mezhdunarodnoi molodezhnoi nauchnoi konferentsii “Gagarinskie chteniya”, 2016, vol. 2, pp. 619.

  11. Schneider Electric Interactive Catalog, 2007, available at: http://www2.schneider-electric.com/documents/electrical-distribution/en/shared/interactive-catalogue...

  12. ABB Product Guide, 2016, available at: http://www.abb.ru/ProductGuide/

  13. Il'yashov V.P. Kondensatornye ustanovki promyshlennykh predpriyatii (Capacitor installations for industrial enterprises), Moscow, Energiya, 1972, 248 p.

  14. Manin A.V., Yudin A.V., Groshev A.N., Moskaleva O.A. Vestnik Rybinskoi gosudarstvennoi aviatsionnoi tekhnologicheskoi akademii imeni P.A. Solov'eva, 2011, no. 1 (19), pp. 117-122.

  15. Manin A.V., Yudin V.V., Krivov Yu.N., Moskaleva O.A. Elektrika, 2013, no. 5, pp. 7-13.

  16. Kuznetsov P.A., Solenyi S.V. Zavalishinskie chteniya: molodezhnaya sektsiya. Sbornik dokladov. St. Petersburg, GUAP, 2016, 210 p.

  17. Yudin V.V., Manin A.V., Yudin A.V. Vestnik Rybinskoi gosudarstvennoi aviatsionnoi tekhnologicheskoi akademii imeni P.A. Solov'eva, 2010, no. 1(16), pp. 151 – 156.

  18. Krivov Yu.N., Manin A.V., Yudin V.V. Elektrika, 2013, no. 7, pp. 24-27.

  19. Fomkina V.I., Moskvicheva N.V. Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol. 17, no. 6, pp. 195-199.

  20. Sudakov V.A. Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol. 17, no. 1, pp. 149-153.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI