Aeronautical and Space-Rocket Engineering
Thermal engines, electric propulsion and power plants for flying vehicles
Аuthors
1*, 2**1. Yakovlev Corporation Regional Aircraft Branch, 26, Leninskaya Sloboda str., Moscow, 115280, Russia
2. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia
*e-mail: moshkov89@bk.ru, p_moshkov@ssj.irkut.com
**e-mail: samohin_vf@mail.ru
Abstract
In recent years, the problem of acoustic signature has become particularly actual and a topical due to the extensive use of combat aircraft systems with unmanned structures, solving decisive reconnaissance and strike tasks, for which low figures of acoustic signature ensuring is of prime importance.
The paper considers basic techniques for engine-propeller power plant noise reduction of aircraft type UAVs, including single air propellers of various structures and configuration, as well as piston engines.
Based on semi-empirical model the authors proposed equations allowing evaluate the effect of the diameter and number of blades on tonal components of the propeller noise in the condition of constant thrust, aerodynamic and geometric similarity of blade profiles, as well as the Mach number of the tip speed. Acoustic testing of Yak-18T light aircraft with two- and three-blade propellers, F30 and MAI-223M, performed at the Moscow Aviation Institute airfield, generally confirmed these equations qualitatively.
The propeller diameter decrease of a small-sized UAV with piston engine was considered as one of the options for noise and signature reduction. It was found, that the diameter decrease by 3.3% resulted in approximately 300 meters reduction of the distance to the ground checkpoint, which a small-sized UAV can approach without the possibility of being detected.
The features of acoustic pusher propellers and proposed methods for noise reduction are described. Based on the flight test the aircraft noise reduction afield technique by axial clearance increasing between the pusher propeller and the wing located in front of it was proposed. The paper demonstrates that with the considered clearance increase by an amount greater than the wing chord, the negative effect of the propeller mounting in pushing arrangement is practically eliminated.
UAVs designers can implement the engine-propeller power plant noise reduction methods, presented in the paper. Finally, the authors outlined the ways of further studies aimed at solving the problem of developing low-noise power plants for small-sized unmanned aerial vehicles.
Keywords:
acoustics signature, aircraft audibility, detectability, unmanned aerial vehicle, propeller noise, piston engine noise, engine-propeller power plant, noise reduction methods, acoustic locationReferences
-
Barry F.W., Magliozzi B. Noise detectability prediction method for low tip speed propellers. Air Force Aero Propulsion Laboratory (AFAPL). Wright-Patterson AFB. Ohio. Technical Report AFAPL-TR-71-31, June 1971, 192 p.
-
Dzhanakiram D.S., Skraggs B.V. Aerokosmicheskaya tekhnika, 1983, vol. 1, no. 10, pp. 108-117.
-
Moshkov P.A., Samokhin V.F. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 2, pp. 50-61.
-
Moshkov P.A., Samokhin V.F. Vestnik SibGAU, 2016, vol. 17, no. 1, pp. 154-160.
-
Moshkov P.A., Samokhin V.F. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2016, vol. 15, no. 3, pp. 25-34.
-
Moshkov P.A. Prognozirovanie i snizhenie shuma na mestnosti legkikh vintovykh samoletov (Prediction and reduction of environmental noise generated by light propeller aircraft). PhD thesis, Moscow, MAI, 2015, 143 p.
-
Moshkov P.A. Scientific and Technical Volga region Bulletin, 2015, no. 4, pp. 101-106.
-
Samokhin V.F., Moshkov P.A. Trudy MAI, 2012, no. 57, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=30715 (accessed 30.06.2012).
-
Moshkov P.A. Nauchno-tekhnicheskii vestnik Povolzhya, 2014, no. 6, pp. 265-270.
-
Samokhin V.F., Moshkov P.A. Trudy MAI, 2015, no. 82, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=58711 (accessed 26.06.2015).
-
Samokhin V.F., Moshkov P.A. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 2, pp. 55-65.
-
Moshkov P.A., Samokhin V.F. Uchenye zapiski TsAGI, 2016, vol. 47, no. 6, pp. 55-60.
-
Samokhin V.F., Ostroukhov S.P., Moshkov P.A. Trudy MAI, 2013, no. 70, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=44459 (accessed 25.11.2013).
-
Moshkov P.A., Yakovlev A.A. Nauchno-tekhnicheskii vestnik Povolzh'ya, 2014, no. 6, pp. 271-274.
-
Hubbard H.H. Aeroacoustics of flight vehicles: Theory and Practice: Noise sources. NASA References Publication 1258, 1991, vol. 1, WRDC. Technical report 90-3052, 606 p.
-
Hanson D.B. Influence of propeller design parameters on far field harmonic noise in forward flight. AIAA Journal, 1980, vol. 18, no. 2, pp. 1313-1319.
-
Prediction procedure for near-field and far-field propeller noise. AIR 1407. Society of Automotive Engineers, 1977, 21 p.
-
Ianniello S., Mascio A. D., Salvatore F., Sollo A., Aversano M., Gennaretti M. Evaluation of Noise Excess for Pushing Propeller Aircraft by CFD Aeroacoustic Calculation. 10th AIAA/CEAS Aeroacoustics Conference, 2004, AIAA Paper, no. 2004-3006, 17 p.
-
Soderman P.T., Clifton Horne W. Acoustic and aerodynamic study of a Pusher-Propeller aircraft model. NASA Technical Paper, 1990, no. 3040, 68 p.
-
Block P.J.W., Gentry Garl L. Directivity and trends of noise generated by a propeller in a wake. Washington, D.C.: National Aeronautics and Space Administration, Scientific and Technical Information Branch, NASA Technical Paper, 1986, no. 2609, 62 p.
-
Shatrov M.G., Yakovenko A.L., Krichevskaya T.Yu. Shum avtomobil'nykh dvigatelei vnutrennego sgoraniya (Noise of automobile internal combustion engine), Moscow, MADI, 2014, 68 p.
-
Shatrov M.G., Yakovenko A.L. Vestnik AGTU, 2008, no. 5 (46), pp. 98-103.
-
Tupov V.V. Bezopasnost' v tekhnosfere, 2012, no. 6, pp. 63-69.
-
Zlenko N.A., Kedrov A.V., Kishalov A.N. Optimal aeroacoustic propeller design. TsAGI Science Journal, 2011, vol. 42, no. 6, pp. 892-844.
-
Kedrov A.V., Kishalov A.N. Trudy TsAGI, 1989, no. 2508, pp. 46-54.
-
Gur O., Rosen A. Optimization of propeller based propulsion system. Journal of Aircraft, 2009, vol. 46, no. 1, pp. 95-106.
-
Gur O., Rosen A. Optimizing electric propulsion systems for unmanned aerial vehicles. Journal of Aircraft, 2009, vol. 46, no. 1, pp. 1340-1353.
-
Pagano A., Frederico L., Barbarino M., Aversano M. Multi-objective aeroacoustic optimization of an aircraft propeller. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. No. AIAA Paper 2008-6059. Victoria. Canada. 10-12 September 2008, http://dx.doi.org/10.2514/6.2008-6059
-
Pagano A., Barbarino M., Casalino D., Frederico L. Tonal and broadband noise calculations for aeroacoustic optimization of propeller blades in a pusher configuration. 15th AIAA/CEAS Aeroacoustics Conference, no. AIAA Paper 2009-3138, Miami, USA, 11-13 May 2009, 18 p.
-
30. Lefebvre T., Canard S., Le Tallec C., Beaumier P., David F. ANIBAL: A new aero-acoustic optimized propeller for light aircraft applications. 27th Congress of ICAS. Nice, France, 19-24 September 2010, 18 p.
-
Samokhin V.F. Trudy TsAGI, 1988, no. 2355, pp. 65-75.
-
Samokhin V.F. Semiempirical method for estimating the noise of a propeller. Journal of Engineering Physics and Thermophysics, 2012, vol. 85, no. 5, pp. 1157-1166.
-
Lipin A.V., Ostroukhov S.P., Serokhvostov S.V., Ustinov M.V., Flaksman Ya.Sh., Shustov A.V. Uchenye zapiski TsAGI, 2007, vol. XXXVIII, no. 3-4, pp. 102-110.
-
Ostroukhov S.P. Aerodinamika vozdushnykh vintov i vintokol'tsevykh dvizhitelei (Aerodynamics of propellers and impellers), Moscow, Fizmatlit, 2014, 328 p.
-
Gutin L.Ya. Zhurnal tekhnicheskoi fiziki, 1936, vol. 6, no. 5, pp. 899-909.
-
Gutin L.Ya. Zhurnal tekhnicheskoi fiziki, 1942, vol. 12, no. 2-3, pp. 76-85.
-
Munin A.G., Kvitka V.E Aviatsionnaya akustika (Aviation acoustics), Moscow, Mashinostroenie, 1973, 448 p.
-
Kazhan V.G., Moshkov P.A., Samokhin V.F. Nauchnoe izdanie MGTU im. N.E. Baumana “Nauka i obrazovanie”, 2015, no. 7, available at: http://technomag.bmstu.ru/doc/782827.html (accessed 25.07.2015).
-
Egorov S.V., Pankratov I.V., Samokhin V.F., Shpakovskii A.A. Materialy XXIV nauchno-tekhnicheskoi konferentsii po aerodinamike. Sbornik tezisov dokladov, Moscow, TsAGI, 2013, 191 p.
-
Ricouard J., Julliard E., Omais M., Regnier V., Baralon S., Parry A. B. Installation effects on contra-rotating open rotor noise. 16th AIAA/CEAS Aeroacoustics Conference. AIAA Paper, no. 2010-3795, Stockholm, Sweden, 2010, 8 p.
-
41. Veldhuis L.L.M., Sinnige T. The effect of pylon trailing edge blowing on the performance and noise production of a propeller. 29th Congress of ICAS. St. Petersburg, Russia, 2014, 15 p.
-
Sinnige T., Lynch K.P., Ragni D., Eitelberg G., Veldhuis L.L.M. Aerodynamic and aeroacoustics effect of pylon trailing edge blowing on pusher propeller installation. 21st AIAA/CEAS Aeroacoustics Conference, AIAA Paper, Dallas, USA, no. 2015-2356, 12 p.
-
Dmitriev V.G., Samokhin V.F. Complex of algorithms and programs for calculation of aircraft noise. TsAGI Science Journal, 2014, vol. 45, no. 3-4, pp. 367-388.
-
Arntzen M., Rizzi S.A., Visser H.G., Simons D.G. Framework for simulating aircraft flyover noise through nonstandard atmospheres. Journal of Aircraft, 2014, vol. 51, no. 3, pp. 956-966.
-
Ostrikov N.N., Denisov S.L., Medvedskii A.L. Vestnik PNIPU. Aerokosmicheskaya tekhnika, 2016, no. 2 (45), pp. 152-174.
-
Ostrikov N., Denisov S. Airframe shielding of noncompact aviation noise sources: theory and experiment. 21st AIAA/CEAS Aeroacoustics Conference — 2015, AIAA Paper, no. 20152136, http://dx.doi.org/10.2514/6.2015-2691
-
Ostrikov N., Denisov S. Mean flow effect on shielding of noncompact aviation noise sources. 22nd AIAA/CEAS Aeroacoustics Conference — 2016. AIAA Paper, no. 20163014, http://dx.doi.org/10.2514/6.2016-3014
-
Oleson R.D., Patrick H. Small aircraft propeller noise with ducted propeller. 4th AIAA/CEAS Aeroacoustics Conference — 1998,AIAA Paper, no. 98-2284, pp. 464-472.
-
Abalakin I.V., Bakhvalov P.A., Bobkov V.G., Kozubskaya T.K., Anikin V.A. Matematicheskoe modelirovanie, 2015, vol. 27, no. 10, pp. 125-144.
-
Abalakin I.V., Anikin V.A., Bakhvalov P.A., Bobkov V.G., Kozubskaya T.K. Izvestiya Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza, 2016, no. 3, pp. 130-145.
-
Delfs J.W. Simulation of aircraft installation noise a key to low noise aircraft design. Computational experiment in aeroacoustics. CEAA 2016. Svetlogorsk, Kaliningrad region, Russia, September 21-24, 2016. Book of abstracts. Moscow, Keldysh Institute, 2016, pp. 7-11.
-
Moshkov P.A. Vestnik SSAU, 2016, vol. 15, no. 2, pp. 152-161.
-
Moshkov P.A., Samokhin V.F. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 4, pp. 26-34.
-
Animitsa V.A., Borisov E.A., Kritskii B.S., Mirgazov R.M. Trudy MAI, 2016, no. 87, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=69626 (accessed 10.08.2016).
-
Denisov S.L., Medvedskii A.L. Mekhanika kompozitsionnykh materialov i konstruktsii, 2012, vol. 18, no. 4, pp. 527–543.
-
Denisov S.L., Medvedskii A.L., Paranin G.V. Study of the durability of isotropic plates under wideband acoustic loading with different type of spatial correlation functions. TsAGI Science Journal, 2014, vol. 45, no. 3-4, pp. 345-365.
-
Razbegaeva I.A. Trudy MAI, 2011, no. 45, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=25552 (accessed 10.08.2016).
-
Baklanov V.S. Vibroacoustic processes modeling in the turbojet engine and other power plant units based on frequency characteristics investigation of the “engine-mounting-airframe” system. TsAGI Science Journal, 2010, vol. 41, no. 1, pp. 109-118.
-
Baklanov V.S. Akusticheskii zhurnal, 2016, vol. 62, no. 4, pp. 451-456.
-
Baklanov V.S. Matematicheskoe modelirovanie, 2007, vol. 19, no. 7, pp. 27-38.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |