Transformer multifunction switched mode converters for onboard airspace power sources

Electrical Engineering

Electrical engineering complexes and systems


Аuthors

Reznikov S. B.1*, Kharchenko I. A.2**, Marchenko M. V.3***, Zhegov N. A.3****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Central Research and Development Testing Institute of the Engineering Troops of the Ministry of Defense of the Russian Federation, Nakhabino-2, Moscow region, 143432, Russia
3. Moscow Experimental Design Bureau “Mars”, 1-st Shemilovsky lane 16, building 2, Moscow, 127473, Russia

*e-mail: rezn41@mail.ru
**e-mail: igor8p5@yandex.ru
***e-mail: m-fallout@yandex.ru
****e-mail: nzhegov@yandex.ru

Abstract

The paper envisages circuit solutions for transformer multifunction switched mode converters meant for uninterruptible power sources as constituent parts of onboard aerospace electric power facilities and electric power supply systems. All solutions are protected by the Russian Federation priority. The paper is of interest for a wide range of specialists working in the field of aerospace onboard power electronic equipment design.

To power actuating brushless motors (aircraft onboard equipment in particular) the voltage higher than that provided by batteries, solar of supercapacitor (ionistor) elements is required due to the necessity of varying magnetic field space forming (either circular or linear) by currents flowing through flexible wires. Ensuring relatively higher voltage level only through series (stacked) low-voltage units, or series connection of the above said batteries with significant supply currents is hampered technologically, and leads to mass and size, reliability and cost parameters reduction. For example, in case of “stacked” units leads burning-out (or break) they should be shunted by diodes with low-voltage conducting junctions. In case of breakdown at the leads of a parallel link, it should be provided with disconnecting fuses. Thus, to increase the voltage level of a primary relatively low-voltage source switched mode converters (SMC or DC/DC converters) based on field-effect transistor switches (MOSFET) with low Rds(on) should be used. They should herewith be reversible to provide feeding batteries intensive charging. As a rule, such converters are included in so-called secondary power sources, or stand-by uninterruptible power sources (UPS) fed by batteries [1].

Aerospace uninterruptible power sources included in onboard electric power facilities and electric power supply systems, acquire primary energy from chemical or solar batteries, either form newly developed super capacitor (ionistor) batteries with relatively low voltage (28 V). As a rule, the UPS output voltages herewith are higher DC voltages (such as 135 V, 270 V, or 540 V), or higher AC three-phase (or single phase) voltage (stabilized or regulated) of constant or regulated frequency (e. g., within the limits of 115/200 V, 360-800 Hz, or 0-115 V, 0-400 Hz). Besides, UPS should provide fast feeding battery charging (accumulator or supercapacitor).

In this regard, at least specific requirements are placed on the above mentioned UPSs.

Keywords:

power electronics, switched mode converter, uninterruptible power source, transformer converter and inverter, airspace secondary power supply, aircraft electric drive

References

  1. Reznikov S.B., Klimova S.R., Kharchenko I.A., Smirnov V.N., Savost'yanov V.V. Silovaya elektronika, 2016, no. 2, pp. 64-68.

  2. Suk S. Patent US № 4.184.197, 15.01.1980.

  3. Kuk S., Nenakhov S. Silovaya elektronika, 2004, no. 2, pp. 62-64.

  4. Reznikov S.B., Bocharov V.V., Kharchenko I.A. Elektromagnitnaya i elektroenergeticheskaya sovmestimost' sistem elektrosnabzheniya i vtorichnykh istochnikov elektropitaniya polnost'yu elektrifitsirovannykh samoletov (Electromagnetic and ehlectropower compatibility supply systems and secondary sources of power ehlectric aircraft), Moscow, MAI, 2014, 160 p.

  5. Shchetimin V.E., Averin S.V. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 4, pp. 159-167.

  6. Oskirko V.O., Semenov V.L., Pavlov A.P. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 4, pp. 168-176.

  7. Orekhov E. Sovremennye tekhnologii avtomatizatsii, 2014, no. 4, pp. 104-108.

  8. Klimov V.P., Portnov A.A., Zuenko V.V. Elektronnye komponenty, 2003, no. 7, pp. 34-41.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI