The upper stage oxygen-hydrogen rocket engine energy characteristics improvement by structural scheme optimization method

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Piunov V. Y.1*, Nazarov V. P.2**, Kolomentsev A. I.3***

1. Isayev chemical design engineering bureau branch Khrunichev State Research and Production Space Center, 12, Bogomolov st., Korolev, Moscow region, 141070, Russia
2. Siberian State University of Science and Technology named after academician M.F. Reshetnev, 31, Krasnoyarsky Rabochy av., Krasnoyarsk, 660014, Russia
3. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: kbhimmash@korolev-net.ru
**e-mail: nazarov@.sibsau.ru
***e-mail: a.i.kolomentsev@yandex.ru

Abstract

The informationally and navigationally oriented spacecraft injection to the working orbit with high positioning accuracy, scientific and research spacecraft transition from support orbits to departure trajectories for deep space flight and other complex tasks of space exploration are carried out by rocket transportation systems. These systems include specialized withdrawal means, named “upper stages”. The following requirements, such as enhanced energy efficiency and reliability, long-term staying in starting readiness mode, protracted operating time and multiple starts are imposed on upper stages' cruise engines. The «liquid oxygen-liquid hydrogen» cryogenic pair burning engines possess maximum energy efficiency. The first home-produced oxygen-hydrogen LRE is 11D56 engine developed at Khimmash Design Bureau headed by A.M. Isaev. This engine can be considered as the basic one for ecologically clean upper stages for rocket carriers of “Angara”, “Soyus 2-16” and “Soyus 3” families presently under development. This engine's design allows modernization or modification (without significant time consumption) of its structurally stand-alone units, preserving characteristics, which define the engine workability and reliability at large. The KVD1 engine energy parameters and characteristics updating is realized by structural scheme optimization based on the structure technical analysis and effective options selection, related to the engine usage tasks.

Based on the experience in the KVD1 engine chamber design and development two options for chamber with retractable nozzle headers design were considered. For these options, corresponding to the two engine modernization variants, optimization of nozzle divergence geometric degree was carried out. Calculation of working process parameters and the main chamber characteristics optimization was performed.

The specific impulse's increase is analyzed by optimum relationship selection of fuel components consumption and selection of the maximum (optimal) pressure in the combustion chamber selection. The optimality criterion of fuel components consumption is payload weight maximum at geostationary orbit, at which, according to the specific impulse mass equivalent, the mass gain is equal to the fuel tanks of the engine unit the mass gain. the results of theoretical and calculating studies consists in defining principal design solutions of two variants of oxygen-hydrogen engines' chambers, under development based on KVD1 LRE.

Keywords:

upper stages, oxygen-hydrogen engines, optimization by LRE specific pulse

References

  1. Nazarov V.P., Zhuravlev V.Yu., Kraev M.V., Kraeva E.M. Raketnye dvigateli kosmicheskikh apparatov (Spacecraft rocket engines), Krasnoyarsk, SibGAU, 2015, 200 p.

  2. Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnykh dvigatelei (Theory of rocket engines), Moscow, Mashinostroenie, 1989, 463 p.

  3. Petrik V.A., Deryagin Yu.A., Piunov V.Yu. Dvigatel', 2010, no. 4(70), pp. 36-37.

  4. Dobrovol'skii M.V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya (Liquid propellant rocket engines. Design basics), Moscow, MGTU im. N. E. Baumana, 2006, 486 p.

  5. Morozov V.I., Zaslavskiy Y.I., Morozov R.F., Orlov N.N., Smirnov I.A., Yakovlev A.G. Liquid Rocket Engines of Russia on the Environmental Pure Components of Fuel for the Crio Stages of Rocket-Boosters. Al'ternativnaya energetika i ekologiya, 2008, no. 3, pp. 42-54.

  6. Piunov V.Yu., Nazarov V.P., Zuev A.A., Gainutdinov A.V. Materialy ХХ yubileinoi mezhdunarodnoi nauchno-prakticheskoi konferentsii “Reshetnevskie chteniya”, Krasnoyarsk, SibGAU, 2016, vol. 1, pp. 212-213.

  7. Piunov V.Yu., Nazarov V.P., Konstantinov R.I., Morozov V.I., Gainutdinov A.V. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva, 2016, vol. 17, no. 2, pp. 431-437.

  8. Gakhun G.G., Baulin A.I., Volodin V.A., Kurpatenkov V.D., Kraev M.V., Trofimov V.F. Konstruktsiya i proektirovanie zhidkostnykh raketnykh dvigatelei (Liquid rocket engines dewsign and development), Moscow, Mashinostroenie, 1989, 424 p.

  9. Smirnov I.A., Piunov V.Yu., Kolkin E.N., Romanov V.S., Isaev A.A., Morozov V.I. Optimizatsiya konstruktivnykh i skhemnykh reshenii modernizirovannogo dvigatelya na baze KVD1A (KVD1A based upgraded engine design and schematic solutions optimtzation), Korolev, KB KhimMash, 2008, 148 p.

  10. Bullok J.R., Santiago J.R. RL-60 – The Next Step in the Evolution of Upper Stage Engines. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 11-14 July 2004. Fort Lauderdale, Florida, 13 p.

  11. Vasil'ev A.P., Kudryavtsev V.M., Kuznetsov V.A., Kurpatenkov V.D., Obel'nitskii A.M., Polyaev V.M., Poluyan B.Ya. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigatelei (Liquid rocket engines theory and calculation fundamentals), Moscow, Vysshaya shkola, 1993. Book 1, 384 p. Book 2, 368 p.

  12. Afanas'ev I. Novosti kosmonavtiki, 2009, vol. 19, no. 5, pp. 46-47.

  13. Vargaftik N.B., Filippov L.P., Tarzimanov A.L., Tonkii E.E. Spravochnik po teploprovodnosti zhidkostei i gazov (Thermal conductivity of liquids and gases handbook), Moscow, Energoatomizdat, 1990, 352 p.

  14. Nazarov V.P., Yatsunenko V.G., Kolomentsev A.I. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 5, pp. 101-105.

  15. Glikman B.F. Avtomaticheskoe regulirovanie zhidkostnykh raketnykh dvigatelei (Liquid rocket engines automatic control), Moscow, Mashinostroenie, 1986, 296 p.

  16. Fam I., Wang H. YE-75 Upper Stage Cryogenic Rocket Engine. 4th International Conference on Launcher Technology: Spase Launcher Propulsion. 3-6 December 2002. Liege, Belgium, 15 p.

  17. Kozlov A.A., Novikov V.I., Solov'ev E.V. Sistemy pitaniya zhidkostnykh raketnykh dvigatel'nykh ustanovok (Power supply system liquid rocket propulsion systems), Moscow, Mashinostroenie, 1988, 352 p.

  18. Makhin V.A., Prisnyakov V.F., Belik N.P. Dinamika zhidkostnykh raketnykh dvigatelei (Liquid rocket engines dynamics), Moscow, Mashinostroenie, 1969, 834 p.

  19. Dregalin A.F., Zenukov I.A., Kryukov V.G., Naumov V.I. Matematicheskoe modelirovanie vysokotemperaturnykh protsessov v energoustanovkakh (High-temperature processes mathematical modeling in power pants), Kazan, KSU, 1985, 263 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI