Deck-based aircraft aileron adaptive control technique

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Vereshchagin Y. O.

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

e-mail: proartvrn@mail.ru

Abstract

Active development and application of digital technologies enabled realization of advanced algorithms in aircraft control systems, which could not be implemented earlier due to the limited capabilities of analog computers, and the more, so in mechanical control systems. The attempts to ensure aircraft control characteristics invariance to varying flight conditions, aerodynamic configurations, centering and mass-inertia characteristics led to the necessity of employing two classes of characteristics onboard the aircraft, namely, with reference model and with the identifier. Such algorithms are developed and successfully applied in the control systems' longitudinal channel of Su-30Sm, Jak-130, Su-35 and Т-50 aircraft. It is important to notice that the adaptive algorithms in lateral control channel have not found practical application, though the problems requiring solution exist there either.

Thus, the problem of lateral controllability deterioration caused by occurrence of the adverse moment in yaw during aileron deflection exists on all MiG-29 modifications. The aircraft heel moment caused by lateral static stability due to the sliding is directed opposite to the effective aileron roll control moment. Flight speed reduction and increasing angle of attack corresponding to it lead to reduction of available rate of roll, and in limit case to occurrence of roll back reaction to control stick deflection. The acuteness of the problem is partially reduced due to implementation of a unique structural solution, i. e. airspeed head wind eddies generators, which, however, does not eliminate the problem at large. The situation is aggravated in the case of external suspension brackets asymmetrical mounting, which becomes a standard situation in view of the increasing effectiveness of aircraft means of destruction. The aircraft herewith begins to react differently to the stick deflection to the suspension bracket side and to the side, opposite to it, by the rate of roll. It complicates substantially delivering air combat and ground targets attacking, accompanied by drastic banking maneuvers of positive sign to negative and vice versa. Aircraft landing approach control is rather complicated, especially in case of landing on a ship deck of limited size in conditions of oscillatory motion and atmospheric turbulence.

Keywords:

adaptive algorithm, identification, the deck-based aircraft

References

  1. Obolenskii Yu.G. Upravlenie poletom manevrennykh samoletov (Flight control of maneuverable aircraft), Moscow, filial Voenizdat, 2007, 480 p.

  2. Kostin P.S., Vereshchikov D.V., Vereshchagin Yu.O. Trudy XIII Vserossiiskoi nauchno-tekhnicheskoi konferentsii i shkoly molodykh uchenykh, aspirantov i studentov “Aviakosmicheskie tekhnologii AKT-2012” (Moscow 17 October 2012, Tarusa 18-19 October 2012), Voronezh, Elist, 2012, pp. 171-177.

  3. Kostin P.S., Vereshchikov D.V., Vereshchagin Yu.O. Materialy XIV Vserossiiskoi nauchno-tekhnicheskoi konferentsii i shkoly molodykh uchenykh, aspirantov i studentov “Aviakosmicheskie tekhnologii AKT-2013”, Voronezh, Elist, 2013, pp. 252-256.

  4. Bukov V.N. Adaptivnye prognoziruyushchie sistemy upravleniya poletom (Adaptive predictive flight control systems), Moscow, Nauka, 1987, 232 p.

  5. Vereshchikov D.V., Saltykov S.N. Osobennosti aerodinamiki i dinamiki poleta samoleta s vneshnimi podveskami pri sverkhzvukovykh skorostyakh poleta. (Aerodynamics and flight dynamics specifics of aircraft with external pendants at supersonic flight speeds), Voronezh, VAIU, 2010, 191 p.

  6. Vereshchikov D.V., Kostin P.S., Vereshchagin Yu.O. Materialy vserossiiskoi nauchno-prakticheskoi konferentsii AVIATOR “Aktual'nye voprosy issledovanii v avionike: teoriya, obsluzhivanie, razrabotki”, Voronezh, VUNTs VVS VVA, 2014, pp. 159-161.

  7. Vereshchikov D.V., Kuznetsov A.D. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 3, pp. 212-128.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI