Technological specifics of manufacturing of anodes based on aluminum-indium alloys system for chemical current sources

Metallurgy and Material Science

Metal forming


Аuthors

Eremeev N. V.*, Eremeev V. V.*, Kondyukov S. L.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: labomd@mail.ru
**e-mail: sezoom@mail.ru

Abstract

Presently, one of the meaningful problems in modern machine building consists in creating new electric power sources. It is of special importance for such human field of activities as aircraft and spacecraft building.

Chemical current sources (CCS) based on aluminum anodes, where various solid, liquid or gas oxidizers used as cathodes, found an extensive application in spacecraft electric power systems. Very often, the modern methods of such sources design, however, turn out rather complicated and energy consuming.

One of the most successful electrical systems based on CCS, applied in modern spacecraft, is an oxygen-aluminum system with liquid electrolyte, consuming oxygen from the environment.

In most cases, anodes are made of aluminum alloying with such metals as Ga, Sn, In. Nevertheless, the high values of anode potential and current were obtained while the experiments with Al-In alloy anode. It was found, that aluminum doping with Indium ensures anode electrochemical activity with faraday efficiency no less than 90%.

Thus, this work was focused on developing the scientifically substantiated technology of anode manufacturing based on Al-In alloy to ensure highly dispersed, isotropic structure to provide a uniform anode dissolution, decreasing pitting formation, and, as a consequence, increasing energy and performance characteristics.

The main difficulty while Al-In alloys casting consists in organizing a uniform indium particles distribution (which is not soluble in a solid aluminum) over the solid base metal volume. The reason to it stems from too large difference between aluminum and indium melting points (659°C and 156°C respectively), as well as high density of the latter (6.5 g/cm3). Introduction of traditional modifiers into the alloy is unacceptable, since they (Ti, Zr, B) aggravate the electrochemical figures.

The studies conducted in MAI (laboratory UNPL “TOMD”) allowed develop technological scheme for obtaining anodes' blanks. The scheme includes obtaining ring blanks using additive technology of centrifugal casting and pressing by using shear deformation during pipe billet extrusion. It will allow work out sufficiently the alloy structure, grind up the phase inclusions and, as a result, ensure the necessary properties' level.

A distinctive advantage of the developed technology compared to the analogues is the possibility of regulating of a significant number of factors during the deformation process and, accordingly, to obtain the best possible material's characteristics in the final product. This technology is realized herewith using traditional equipment.

Keywords:

anode Al-In, rapidly solidified aluminum alloy, aluminum alloy Al-In microstructure, centrifugal casting, pressing by using shear deformation

References

  1. Zhuk A.Z., Kleimenov B.V., Shkol'nikov E.I., Bersh A.V. Alyumovodorodnaya energetika (Alumo-hydrogen energetics), Moscow, OIVT RAN, 2007, 278 p.

  2. Zhuk А.Z., Ilyukhina A.V., Ilyukhin A.S., Kleimenov B.V., Nagayama M. Elektrokhimicheskaya energetika, 2013, vol. 13, no. 2, pp. 83-89.

  3. Kravchenko L.L., Okorokova N.S., Pushkin K.V., Sevruk S.D., Farmakovskaya A.A. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 3, pp. 74-81.

  4. Berezhnoi V.L. Tekhnologiya legkikh splavov, 2007, no. 3, pp. 84-90.

  5. Benedyk J.C. Review and Analysis of Emerging Extrusion Processes. Part 1: KOBO and ECAE Extrusio Processes. Light Metal Age, 2001, pp. 40-47.

  6. Korbel A., Bochniak W. Method of Plastic Forming of Materials. Patent US № 5737959A, 14.04.1998.

  7. Berezhnoi V.L. Tekhnologiya legkikh splavov, 2007, no. 1, pp. 109-117.

  8. Beigel'zimer Ya.E., Synkov S.G., Orlov D.V., Reshetov A.V. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem, 2004, no. 6, pp. 15-22.

  9. Berezhnoi V.L., Shcherba V.N., Baturin A.I. Pressovanie s aktivnymi silami treniya (Extrusion with active friction forces), Moscow, Metallurgiya, 1988, 288 p.

  10. Laue K. and Stenger N. Extrusion: Processes. Machinery. Tooling. ASM, New York, 1981, 457 p.

  11. Popov V.V., Eremeev V.V., Eremeev N.V. Patent RU № 2562594 S2, 10.09.2015.

  12. Petrov A.P., Eremeev V.V., Bespalov A.V. Tekhnologiya legkikh splavov, 2007, no. 1, pp. 121-125.

  13. Petrov A.P., Eremeev V.V., Bespalov A.V. Tekhnologiya legkikh splavov, 2008, no. 4, pp. 65-69.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI