Research on realization of pulsating working processes in jet engines

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Bogdanov V. I.

United Engine Corporation “Saturn”, 163, Lenin av., Rybinsk, Yaroslavl region, 152903, Russia



The article presents the results of the study in elaboration of scientific discovery No 314 “Phenomenon of the abnormal high growth of thrust in the ejector process with pulsating active stream” performed in MAI. The possibility of pulsating jet impulse increase through ejectorless addition of gas mass both from the external atmospheric environment and used up gas was shown experimentally. It increases the meaningfulness of the discovery. The physics of the process of the used up gas mass in pulsating stream is based the well-known phenomenon of wave interaction of cyclic masses with various velocities of front and tail parts.

Calculating and experimental studies substantiated the capability of creating a nozzle with the spherical resonator-thrust amplifier for air-breathing jet engine with stationary fuel combustion. The mechanism of gas masses adding in oscillating process is shown. The thrust amplification at certain gas-dynamic and geometrical relationships herewith can make 1.5 and more.

Carrying out of experimental studies on a vacuum bench (imitation of space conditions) has confirmed effective exhaust gas mass addition that opens new capabilities for increasing the thrust efficiency of space jet engines. According the test results, the constructive recommendations on the improvement of working process are given.

The results of computation and design working out of implementation of the obtained effects in the nozzle with the resonator of an optimum configuration for conventional air-breathing jet engine without its mass and dimensions characteristics derating present a great practical interest. Conditions and recommendations on calculation are given.

Possible perspective trends of further studies on implementation of the obtained effects of thrust increase at the expense of exhaust gas mass addition in liquid-propellant rocket engine and solid-propellant rocket engine with spin detonation fuel combustion, as well as in a gas turbine engine are determined.


combustion chamber of constant volume, added gas mass, pulsing working process, ejector thrust amplifier, spin detonation in rocket engines, nozzle with the resonator


  1. Kudrin O.I., Kvasnikov A.V., Chelomei V.N. Vestnik AN SSSR, 1986, no. 10, pp. 94-99.

  2. Bogdanov V.I. Inzhenerno-fizicheskii zhurnal, 2006, vol. 79, no. 3, pp. 85-90.

  3. Bogdanov V.I. Pulse Increase at Mass Interaction in an Energy Carrier. American Journal of Modern Physics, 2013, vol. 2, no. 4, pp. 195-201.

  4. Baum F.A., Stanyukovich K.P., Shekhter B. I. Fizika vzryva (Physics of explosion), Moscow, Nauka, 1975, 704 p.

  5. Kudrin O.I. Trudy MAI, Sbornik statei, Moscow, 1958, issue 97, pp. 98-180.

  6. Bogdanov V.I., Burakova L.I. Vestnik Rybinskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta im. P.A. Solov'eva, 2011, no. 3, pp. 90-95.

  7. Sergel' O.S. Prikladnaya gidrogazodinamika (Applied fluid dynamics), Moscow, Mashinostroenie, 1981, 374 p.

  8. Paxson D.E., Wilson J., Dougherty K.T. Unsteady Ejector Performance: An Experimental Investigation Using а Pulsejet Driver. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, United States (July 7-10, 2002). AIAA–2002–3915, 12 p.

  9. Levin V.A., Smekhov G.D., Tarasov A.I., Khmelevskii A.N. Raschetnoe i eksperimentalnoe issledovanie pulsiruyushchei detonatsii v modeli dvigatelya (Design and experimental study of a pulsating detonation in the motor model), Moscow, Institut mekhaniki MGU, 1998, 34 p.

  10. Bogdanov V.I., Khantalin D.S. Vestnik Rybinskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta im. P.A. Solov'eva. 2014, no. 3(30), pp. 44-49.

  11. Bogdanov V.I., Resh G.F., Shishurin A.V. Vestnik Rybinskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta im. P.A. Solov'eva, 2013, no. 1(24), pp. 23-30.

  12. Kovateva Yu., Vorob'ev A.G., Borovik I.N., Khokhlov A.N., Kazennov I.S. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 3, pp. 45-54.

  13. Bogdanov V.I., Khantalin D.S. Inzhenerno-fizicheskii zhurnal, 2017, vol. 90, no. 1, pp. 186-190.

  14. Bykovskii F.A., Zhdan S.A. Nepreryvnaya spinovaya detonatsiya (Continuous spin detonation), Novosibirsk, SO RAN, 2013, 423 p.

  15. Bogdanov V.I. Vestnik mashinostroeniya, 2014, no. 9, pp. 38-42.

  16. Bogdanov V.I., Borovkova O.S. Patent RU 162799, 27.06.2016.

  17. Krivchenko G.I. Gidravlicheskie mashiny: Turbiny i nasosy, Moscow, Energiya, 1978, 320 p.

  18. Smirnov S.A., Bogdanov V.I. Materialy Vserossiiskoi nauchno-prakticheskoi konferentsii molodykh uchenykh, spetsialistov, aspirantov i studentov “Gidroelektrostantsii v KhKhI veke”, Sayanogorsk, 2014, pp. 104-107.

  19. Bogdanov V.I., Borovkova O.S. Vestnik Rybinskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta im. P.A. Solov'eva, 2013, no. 2, pp. 29-34.

  20. Bogdanov V.I. Inzhener, 2006, no. 11, pp. 14-15. — informational site of MAI

Copyright © 1994-2023 by MAI