Analysis of dynamics and motion control of low-orbital space tether system

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Dong Z.

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

e-mail: dongzhe@yandex.ru

Abstract

The paper analyzes the dynamics of a low-orbital space tether system (STS), consisting of a main and a small space vehicles, and a tether connecting them. Under consideration are the stages of deploying, free motion and stabilizing on a low and nearly circular orbit (170-180 km). The tether escapement is performed fr om the main spacecraft by the mechanism operating only on braking action, according to the feedback principle of measuring the tether length and escapement velocity. The tether length after deploying termination is several tens of kilometers.

The study of the STS motion on a low orbit becomes more complicated due to the necessity of considering the atmospheric drag acting on all system elements including the tether. It was demonstrated, that at the end of the STS deploying in a position close to vertical, unavoidable system oscillations relative to vertical occurred, caused by joint affecting of gravitational and aerodynamic forces (aerogradient effect).

The author suggests a nominal deploying program of the low-orbital STS at the position near to vertical. The proposed STS deploying program, compared to the known programs, accounts for the effect of the aerodynamic force acting on the end-bodies and the tether. The program law elaboration is realized by a simplified model with inextensible tether, and written in the orbital moving coordinate system. To verify the effectiveness of the suggested program the STS mathematical model with distributed parameters, wh ere the tether is represented as an aggregate of material points was elaborated and applied. Numerical simulation of the deploying process revealed that the suggested nominal program of the STS deployment allows decrease the amplitude of aerogradient oscillations of tether relative to the vertical by several times.

Simulation of the stages of free motion and stabilization was performed on the model with distributed parameters. When the orbital height of the system's center of mass decreases to a certain value, the low-orbital STS will switch to the stabilization motion in a given range of orbital height (170-180 km). Stabilization of the system orbital motion is realized by a correcting thruster, located on the main spacecraft. Employing the correctiing thruster ensures the flight stabilization of the low-orbital STS in the given range of orbital height. At the stage of STS motion stabilization, restrictions, imposed on the tethers angle deviations from the vertical are executed.

Keywords:

low-orbital space tether system, deploying, free motion, motion stabilization, correcting thruster

References

  1. Cosmo M.L., Lorenzini E.C. Tethers in Space Handbook, 3rd ed. NASA, Washington DC, Marshall Space FlightCenter, Huntsville, 1997, 241 p.

  2. Beletskii V.V., Levin E.M. Dinamika kosmicheskikh trosovykh system (Dynamics of space tether systems), Moscow, Nauka, 1990, 336 p.

  3. Beletskii V.V., Ivanov M.B., Otstavnov E.I. Model problem of a space elevator. Cosmic Research, 2005, vol. 43, no. 2, pp. 152–156. DOI: 10.1007/s10604-005-0029-1

  4. Pugno N., Schwarzbart M., Steindl A., Troger H. On the stability of the track of the space elevator. Acta Astronautica, 2009, vol. 64, pp. 524–537.

  5. Aslanov V.S., Yudintsev V.V. Behavior of tethered debris with flexible append ages. Acta Astronautica, 2014, vol. 104, issue 1, pp. 91–98. DOI: 10.1016/j.actaastro.2014.07.028

  6. Mantellato R., Valmorbida A., Lorenzini E. Thust aided librating deployment of tape tethers. Journal of Spacecraft and Rockets, 2015, vol. 52, no. 5, pp. 13–95 1406. DOI: 10.2514/1.A33273

  7. Santangelo A., Hoffman J. Exploring the Earths upper atmosphere from the Space Shuttle based AIRSEDS-S tethered satellite mission – a program update. 36th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, USA, 1998, 98-1031. DOI: 10.2514/6.1998-1031

  8. Johnson L., Gilchrist B., Estes R.D., Lorenzini E. Overview of future NASA tether applications. Advances in Space Research, 1999, vol. 24, no. 8, pp. 1055–1063. DOI: 10.1016/S0273-1177(99)00553-0

  9. Ivanov V.A., Sitarskii Yu.S. Dinamika poleta sistemy gibko svyazannykh kosmicheskikh obektov (Flexibly Linked Space Objects Systems flight dynamics), Moscow, Mashinostroenie, 1986, 248 p.

  10. Zhu R., Misra A.K., Modi V.J. Dynamics and Control of Coupled Orbital and Librational Motion of Tethered Satellite Systems. Journal of the Astronautical Sciences, 1994, vol. 42, no. 3, pp. 319–342.

  11. Jordi Puig-Suari, James M.L. Modeling and analysis of orbiting tethers in an atmosphere. Acta Astronautica, 1991, vol. 25, no. 11, pp. 679–686.

  12. Kulkov V.M. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 2, pp. 41–46.

  13. Zabolotnov Yu.M. Control of the deployment of a tethered orbital system with a small load into a vertical position. Journal of Applied Mathematics and Mechanics, 2015, vol. 79, no. 1, pp. 28–34. DOI: 10.1016/j.jappmathmech.2015.04.015

  14. Zabolotnov Yu.M. Introduction to Dynamics and Control in Space Tether System, Beijing, Science Press, 2013, 140 p.

  15. Dong Z., Zabolotnov Yu.M., Wang C. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2016, vol. 18, no. 4(4), pp. 726–732.

  16. Zabolotnov Yu.M. Kosmicheskie issledovaniya, 2017, vol. 55, no. 3, pp. 236–246. DOI: 10.7868/S002342061702008X

  17. Wang C., Zabolotnov Yu.M. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2017, vol. 16, no. 2, pp. 7–17. DOI: 10.18287/2541-7533-2017-16-2-7-17

  18. Wang C., Zabolotnov Yu.M. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk. Aviatsionnaya i raketno-kosmicheskaya tekhnika, 2017, vol. 19, no. 1, pp. 91–97.

  19. Ishkov S.A., Naumov S.A. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2006, vol. 9, no. 1, pp. 77–85.

  20. Ishkov S.A., Sheinikov I.V. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2009, vol. 11, no. 5, pp. 208–215.

  21. Egorychev V.S., Sulinov A.V. Zhidkostnye raketnye dvigateli maloi tyagi i ikh kharakteristiki (Low-thrust liquid rocket engines and their characteristics), Samara, Samarskii gosudarstvenyi aerokosmicheskii universitet, 2010, 104 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI