Structure selection of synchronous motor with permanent magnets and asynchronous start-up

Electrical Engineering

Electromechanics and electric apparatus


Аuthors

Ismagilov F. R., Vavilov V. E.*, Bekuzin V. I.**, Aiguzina V. V.***

Ufa State Aviation Technical University, USATU, 12, K. Marx str., Ufa, 450008, Republic of Bashkortostan, Russia

*e-mail: s2_88@mail.ru
**e-mail: tiobaldo1@rambler.ru
***e-mail: vtipy@mail.ru

Abstract

Aerospace industry is in special want of high-efficiency electrical drives (motors), which allow reduce electric energy losses and rise productiveness of equipment. The number of electric drives onboard an aircraft varies from 50 to 220 pieces. With high tech development, the number of electric drives onboard an aircraft will only grow, and insignificant efficiency increase of all electric drives in the aggregate will lead to significant fuel savings. Three-phase induction motors with squirrel-cage rotor are in most common use in aerospace industry as fuel transfer drives. Asynchronous motors with maximum possible energy characteristics possess an efficiency below 80% and a power factor below 0.82. A possible alternative to asynchronous motors are BLCD motors, though their employing as pump drives becomes rather hindered due to cost intensive control system and large weight and size parameters. Another possible alternative to asynchronous motors may be a synchronous motor with permanent incorporated magnets and direct asynchronous start-up. The article is devoted to the analysis of structures of synchronous motors with incorporated permanent magnets and asynchronous start-up, for fuel-transfer pumps drives for the aerospace industry. The analysis was performed by computer simulation in the Ansoft Maxwell software package. The article proves the superiority of such motors over asynchronous motors. The structure of synchronous motor with incorporated permanent magnets and asynchronous start-up, which meet the requirements to fuel transfer drives for aerospace industry, was obtained based on computer simulation. The obtained results can be employed for the design of synchronous motors with permanent incorporated magnets and asynchronous start-up.

Keywords:

synchronous motor, incorporated permanent magnets, asynchronous direct start

References

  1. Gerada D., Mebarki A., Brown N., Gerada C., Cavagnino A., Boglietti A. High-speed electrical machines: Technologies, trends, and developments. IEEE Transactions on Industrial Electronics, 2014, vol. 61, no. 6, pp. 2946-2959. DOI: 10.1109/TIE.2013.2286777

  2. Cavagnino A., Li Z., Tenconi A., Vaschetto S. Integrated generator for more electric engine: Design and testing of a scaled-size prototype. IEEE Transactions on Industry Applications, 2013, vol. 49, no. 5, pp. 2034-2043. DOI: 10.1109/TIA.2013.2259785

  3. Ganev E.D. High-Performance Electric Drives for Aerospace More Electric Architectures. Part I – Electric Machines. IEEE Power Engineering Society General Meeting, 2007, 8 p. DOI: 10.1109/PES.2007.385463

  4. Vavilov V.E., Bekuzin V.I., Aiguzina V.V. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 164-175.

  5. Dieter Gerling, Mohammed Alnajjar. Six-phase electrically excited synchronous generator for More Electric Aircraft. International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). 2016, pp. 7-13. DOI: 10.1109/SPEEDAM.2016.7525938

  6. Skawinski G. Fuel pump motor-drive systems for more electric aircraft, Doctor of Philosophy, University of Bath, 2010, 235 p.

  7. Weimer J. A. The role of electric machines and drives in the more electric aircraft. Proceeding of IEEE International Conference on Electric Machines and Drives (IEMDC), Madison, Wisconsin, USA, 2003, vol. 1, pp. 11-15. DOI: 10.1109/IEMDC.2003.1211236

  8. Ribeiro R.L.A., Jacobina C.B., Lima A.M.N., da Silva E.R.C. A strategy for improving reliability of motor drive systems using a four-leg three-phase converter. Sixteenth Annual Institute of Electrical and Electronics Engineers (IEEE) Applied Power Electronics Conference and Exposition (APEC 2001). 2001, vol. 1, pp. 385-391. DOI: 10.1109/APEC.2001.911676

  9. Jacobina C.B., Freitas I.S., Oliveira T.M., da Silva E.R.C., Lima A.M.N. Fault tolerant control of five-phase AC motor drive. Institute of Electrical and Electronics Engineers (IEEE) 35th Annual Power Electronics Specialists Conference, 2004, vol. 5, pp. 3486-3492. DOI: 10.1109/PESC.2004.1355091

  10. Cao W., Mecrow B.C., Atkinson G.J., Bennett J.W., Atkinson D.J. Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA). IEEE Transactions on Industrial Electronics, 2012, vol. 59, no. 9, pp. 3523-3531. DOI: 10.1109/TIE.2011.2165453

  11. Welchko B.A., Lipo T.A., Jahns T.M., Schulz S.E. Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations. IEEE Transactions on Power Electronics, 2004, vol. 19, no. 4, pp. 1108-1116. DOI: 10.1109/TPEL.2004.830074

  12. Kasten Henning, Hofmann Wilfried. Electrical machines with higher efficiency through combined star-delta windings. IEEE International Electric Machines & Drives Conference (IEMDC), 2011, pp. 1374-1379. DOI: 10.1109/IEMDC.2011.5994806

  13. Cistelecan M. V., Ferreira F. J. T. E., Popescu M. Adjustable Flux Three-Phase AC Machines With Combined Multiple-Step Star-Delta Winding Connections. IEEE Transactions on Energy Conversion, 2010, vol. 25, no. 2, pp. 348-355. DOI: 10.1109/TEC.2009.2035692

  14. Nakayama Misa, Naka Kouki, Morita Masao, Inoue Masaya, Shimada Akihiro. Induction machine. Patent US 20060355899, 31.06.2006.

  15. Siemens, https://www.siemens.com/global/en/home.html

  16. Gerashchenko V.V., Levshukov N.N., Gaido V.K., Levshukov N.I., Gerashchenko A.V., Basharimova V.N. Patent RU 2449301 S1, 27.04.2012.

  17. Ertugrul N., Soong W., Dostal G., Saxon D. Fault tolerant motor drive system with redundancy for critical applications. IEEE 33rd Annual IEEE Power Electronics Specialists Conference, 2002, vol. 3, pp. 1457-1462. DOI: 10.1109/PSEC.2002.1022381

  18. Lee Y., Habetler T.G. A stator turn fault tolerant strategy for induction motor drives in safety critical applications. 37th IEEE Power Electronics Specialists Conference. Jeju, South Korea, 2006, 7 p. DOI: 10.1109/pesc.2006.1712150

  19. Elistratova V., Hecquet M., Brochet P., Vizireanu D., Dessoude M. Analytical approach for optimal design of a line-start internal permanent magnet synchronous motor. 15th European Conference on Power Electronics and Applications (EPE). Lille, France, 2013, 7 p. DOI: 10.1109/EPE.2013.6631924

  20. Chen Xiaoyuan, Deng Zhiquan, Peng Jingjing. Fault tolerant switched reluctance machine for fuel pump drive in aircraft. 4th IEEE Conference on Industrial Electronics and Applications (ICIEA 2009), Xian, China, 2009, pp. 2340-2344. DOI: 10.1109/ICIEA.2009.5138617

  21. El-Wakeel Amged, Gawish S. A., Badr M.A.L. Design of a fault tolerant switched reluctance motor for an aircraft fuel pump application. 8th International Conference on Aerospace Sciences and Aviation technology (ASAT99), At Cairo, Egypt, 1999, 14 p. DOI: 10.13140/2.1.1563.4242

  22. Dlugiewicz L., Kolowrotkiewicz J., Szelag W., Slusarek B. Permanent magnet synchronous motor to drive propellant pump. International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 2012, 2 p. DOI: 10.1109/SPEEDAM.2012.6264431

  23. Ismagilov F.R., Khayrullin I.Kh., Vavilov V.Ye., Bekuzin V.I., Ayguzina V.V. Minimization of Energy Losses in Ultra-High-Speed Electrical Rotating Machines. Elektrotehnicheskii vestnik, 2017, vol. 84, no. 1-2, pp. 56-60.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI