Electric power supply system with distributed differential high voltage dc-link and modular-scalable architecture for all-electric aircraft

Electrical Engineering

Electrical engineering complexes and systems


Аuthors

Reznikov S. B.1*, Kiselev M. A.2**, Moroshkin Y. V.2***, Mukhin A. A.2****, Kharchenko I. A.3*****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. State Institute of Aviation Systems, 7, Victorenko str., Moscow, 125319, Russia
3. Central Research and Development Testing Institute of the Engineering Troops of the Ministry of Defense of the Russian Federation, Nakhabino-2, Moscow region, 143432, Russia

*e-mail: rezn41@mail.ru
**e-mail: makiselev@2100.gosniias.ru
***e-mail: yvmoroshkin@2100.gosniias.ru
****e-mail: aamuhin@2100.gosniias.ru
*****e-mail: igor8p5@yandex.ru

Abstract

The promising concept of all-electric aircraft free from pneumo- and hydro actua-tors for flight control and stabilizing rotation frequency of main starter-generators supposes significant rise of power supply capacity up to 1.5 MW and more. To ensure high reliability indices and quality of supplied electric energy, the parallel con-nection of supply channels of onboard electric power system should be provided, as well as reversible (bidirectional) interconnection with stand-by low-voltage batteries.

To realize the concept of all-electric aircraft, the article suggests application of the so-called differential higher voltage DC-link with frame grounded averaged-potential (“zero”) wire.

Apart from the well-known benefits of the high DC voltage distribution subsystems, suggested high voltage DC-link has specific benefits, which allow substantiate particular requirements to the power supply systems for domestic all-electric aircraft.

As an example, the article presents the power circuit of the electric power supply combined channel with high voltage DC-link and standby battery based uninterruptible source for combined electric power systems with modular-scalable architecture. It also describes this channels operation. The reviewed structure of a single-phase power supply channel with high voltage DC-link may be recommended as an interrelated group of unified modules of switched mode converters applicable for synthesis of combined power supply systems with modular-scalable architecture and enhanced power supply capacity, and for all-electric aircraft power supply systems in particular.

The article suggest also the combined power supply system with distributed higher voltage DC-link and modular-scalable architecture for all-electric aircraft. Schematic and algorithmic solutions for three types of multifunctional switched mode converters, encompassing all specter of necessary conversions in onboard systems are considered. These solutions allow realize power supply systems with modular-scalable architecture for all-electric aircraft with account for import substitution of power electronics product range. The article presents the example of a simplified combined power supply system with differential higher voltage DC-link of hypothetical all-electric aircraft with four cruise engines and four main starter-generators.

Keywords:

power electronics, multipurpose switched mode converters, all-electric aircraft, differential high voltage DC link, reversible rectifier-inverter transducer, bidirectional invertor-rectifier converter, reversible switched mode converter, bidirectional frequency converter

References

  1. Levin A.V., Musin S.M., Kharitonov S.A., Kovalev K.L., Gerasin A.A., Khalyutin S.P. Elektricheskii samolet: kontseptsiya i tekhnologii (Electric aircraft: concept and technology), Ufa, UGATU, 2014, 388 p.

  2. Reznikov S.B., Bocharov V.V., Kharchenko I.A. Elektromagnitnaya i elektroenergeticheskaya sovmestimost sistem elektrosnabzheniya i vtorichnykh istochnikov pitaniya polnostyu elektrifitsirovannykh samoletov (Electromagnetic and electric power compatibility of power supply systems and secondary power sources of all-electric aircraft), Moscow, MAI, 2014, 160 p.

  3.  Reznikov S.B., Kharchenko I.A., Averin S.V., Lavrinovich A.V. Vestnik Moskovskogo aviatsionnogo instituta, 2015, no. 4, pp. 129-141.

  4. Reznikov S.B., Kharchenko I.A., Lavrinovich A.V. Prakticheskaya silovaya elektronika, 2016, no. 1(61), pp. 39-46.

  5. Reznikov S.B., Klimova S.R., Kharchenko I.A., Smirnov V.N., Savostyanov V.V. Silovaya elektronika, 2016, no. 2, pp. 64-68.

  6. Reznikov S.B., Bocharov V.V., Konyakhin S.F., Parfenov E.V. Silovaya elektronika, 2011, no. 3, pp. 76-78.

  7. Kuk S., Nenakhov S. Silovaya elektronika. Part 1, 2004, no. 2, pp. 62-64 and Part 2, 2005, no. 1, pp. 77-79.

  8. Gruzkov S.A. Elektrooborudovanie letatelnykh apparatov (Electric flying machines), Moscow, MEI. Vol. 1, 2005 - 568 p. Vol. 2, 2008 - 552 p.

  9. Levin A.V., Alekseev I.I. Aviatsionnaya promyshlennost, 2006, no. 2, pp. 24-31.

  10. Levin A.V., Alekseev I.I., Lifshits E.Ya. Aviatsionnaya promyshlennost, 2007, no. 1, pp. 50-52.

  11. Karasev D.A., Arutyunov A.G., Zagordan A.A. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 1, pp. 132-139.

  12. Sistemy elektrosnabzheniya samoletov i vertoletov. Obshchie trebovaniya i normy kachestva elektroenergii. GOST R 54073-2010 (Power supply systems of airplanes and helicopters. General requirements and norms of quality of electric energy. State Standard R 54073-2010), Moscow, Standartinform, 2011, 34 p.

  13. Reznikov S.B., Bocharov V.V., Kirillov V.Yu., Postnikov V.A. Elektroenergeticheskaya i elektromagnitnaya sovmestimost transportnogo elektrooborudovaniya s vysokovoltnymi tsepyami pitaniya (Electric power and electromagnetic compatibility of transport facilities with high-voltage power circuits), Moscow, MAI-PRINT, 2010, 512 p.

  14. Bocharov V.V., Postnikov V.A., Reznikov S.B., Kharchenko I.A. Trudy MAI, 2012, no. 58, available at: http://trudymai.ru/published.php?ID=33058

  15. Oreshkina A. Invest-Forsait, 2017, available at: https://www.if24.ru/bolee-menee-elektricheskij-samolet/

  16. Voronovich S., Kargopoltsev V., Kutakhov V. Aviapanorama, 2009, no. 2 (74), available at: http://aviapanorama.su/wp-content/uploads/2009/04/14.pdf

  17. Reznikov S.B., Syroezhkin E.V., Kharchenko I.A. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 3, pp. 143-154.

  18. Tulinova E.E., Kovalev K.L., Ivanov N.S., Larionov A.E. Elektrichestvo, 2016, no. 4, pp. 15-25.

  19. V Rossii sozdaetsya polnostyu elektricheskii samolet, http://путь.рф/news/125/

  20. Koptev A.N. Aviatsionnoe i radioelektronnoe oborudovanie vozdushnykh sudov grazhdanskoi aviatsii (Aircraft and radio electronic equipment of civil aviation aircraft), Samara, Samarskii gosudarstvennyi aerokosmicheskii universitet im. S.P. Koroleva, 2011. Book 1 - 244 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI