Electromecanical complex with high-frequency induction drive for gas-turbine engine

Electrical Engineering

Electrical engineering complexes and systems


Аuthors

Abramovich B. N.*, Sychev Y. A.**, Kuznetsov P. A.***

Saint-Petersburg Mining University, 2, Vasilevskii ostrov, 21st Line, Saint-Petersburg, 199106, Russia

*e-mail: babramov2bn@mail.ru
**e-mail: sychev_yura@mail.ru
***e-mail: kuznetsovpavel@inbox.ru

Abstract

The main issue of this article is modeling and reviewing of the possibilities of high-speed induction motors to modernize conventional and newly developed technical solutions.

The performed analysis reveals that by the year 2050 electrical energy production and consumption will practically double relative to 2015. Electric drive is one of its key consumers, and induction motors as the main motors. In this regard, presently the issue of meeting the rapidly developing industry requirements for developing highly effective reliable models capable of operating under conditions of drastically changing load arises.

The prospective arrangement to be modernized with such electric drive is a gearbox of a gas turbine engine. Difficultly controlled and tightly coupled with gearing-system, the pumps can be substituted by their lightweight, small-sized analogs in the form of electric drives. The authors offer two possible structures of modernization of various degree of complexity.

The induction motor modeling is complicated by computing parameters of its equivalent scheme. The article presents the review of the key values hard to calculate, and simplifications description, which were assumed while those parameters computing. The induction squirrel-cage motor with two rotor windings was selected as the basic model.

Two models for studying characteristics of high-speed motors were developed with MATLAB-Simulink. The first model simulates the motor with frequency regulator, and the second one is finished electrically driven gearbox of gas turbine engine aggregates. The problems of harmonic components generation by frequency converters are considered as well.

High frequency motors simulation results were compared to series-produced analog. They demonstrate the superiority of the new models compared to conventional, such as less jitter of the velocity curve, reduced inrush current, faster transients and increased torque. Comparison of variable-frequency control technique advantages with series-produced analogs was performed in the final part. The wider capabilities of the enhanced frequency range are demonstrated.

Keywords:

GTEs Gearbox, high-frequency induction motors, harmonics compensation, LCL-filters, Simulink model, electric drive modernization

References

  1. International Energy Outlook 2016. EIA U.S. Energy Information Administration. Forrestal Building, Washington DC 20585, USA, 2016, 290 p.

  2. Makarov V.G. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2011, no. 6, pp. 79-92.

  3. Vinnitskii Yu.D., Shakaryan Yu.G. Energiya edinoi seti, 2016, no. 3(26), pp. 14-28.

  4. Machulin P.S. Molodoi uchenyi, 2016, no. 10(114), pp. 273-275.

  5. Matveenko G.P., Konyukhov G.M., Lysenko A.I. Gazoturbinnyi dvigatel dlya regionalnykh samoletov SaM-146. Obshchie polozheniya. Rybinsk, RMP, 2009. Part 1, pp. 72-74.

  6. Kiselev Yu.V., Kiselev D.Yu. Dvigatel' SaM-146. Ustroistvo osnovnykh uzlov (SaM-146 engine. Main units structure), Samara, SGAU, 2012, pp. 36-39.

  7. Lebedev M.V., Kikot' N.V., Burov M.N. Klimovskie chteniya – 2016 “Perspektivnye napravleniya razvitiya aviadvigatelestroeniya”. Sbornik statei, St. Petersburg, pp. 75-81.

  8. Pedra J., Corcoles F. Estimation of induction motor double-cage model parameters from manufacturers' data. IEEE Transactions on Energy Conversion, 2004, vol. 19, no. 2, pp. 310–317. DOI: 10.1109/TEC.2003.822314

  9. Pedra J. On the Determination of Induction Motor Parameters From Manufacturer Data for Electromagnetic Transient Programs. IEEE Transactions on Power Systems, 2008, vol. 23, no. 4, pp. 1709-1718. DOI: 10.1109/TPWRS.2008.2002293

  10. Singh M.K., Chauhan M., Singhal A.K., Saxena N. A Methodology to Develop a Simulink Model of Three Phase Induction Motor. International Journal of Emerging Technology and Advanced Engineering, 2014, vol. 4, Special Issue 1, pp. 93-97.

  11. Kuznetsov P.A., Lisitsin A.N. LXIV nauchno-tekhnicheskaya sessiya po problemam gazovykh turbin i parogazovykh ustanovok “Fundamental'nye problem primeneniya sovremennykh GTU v otechestvennoi ekonomike – rezul'taty osvoeniya i ekspluatatsii i zadachi na budushchee” (Kazan, 12-15 September 2017). Sbornik dokladov, pp. 110-114.

  12. Chernykh I.V. Modelirovanie elektrotekhnicheskikh ustroistv v Matlab, SimPowerSystems i Simulink (Simulation of power units in Matlabb, SimPowerSystems, and Simulink), Moscow, DMK Press, St. Petersburg, Piter, 2008, 288 p.

  13. Chepkunov R.A. Inzhenernye i obrazovatel'nye tekhnologii v elektrotekhnicheskikh i kompyuternykh sistemakh, 2013, no. 4, pp. 56-62.

  14. Soong W.L., Kliman G.B., Johnson R.N., White R.A., Miller J.E. Novel high-speed induction motor for a commercial centrifugal compressor. IEEE Transactions on Industry Applications, 2000, vol. 36, no. 3, pp. 706-713. DOI: 10.1109/28.845043

  15. Abramovich B.N., Ustinov D.A., Sychev Yu.A., Shklyarskii A.Ya. Neftyanoe khozyaistvo, 2014, no. 8, pp. 110-112.

  16. Kuznetsov P.A., Stepanov O.A. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 4, pp. 145-154.

  17. Kuznetsov P.A., Stepanov O.A. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 157-163.

  18. Abramovich B.N., Sychev Yu.A., Mingazov A.S., Polishchuk V.V. Neftyanoe khozyaistvo, 2013, no. 10, pp. 126-127.

  19. Abramovich B.N., Sychev Yu.A. Promyshlennaya energetika, 2014, no. 12, pp. 40-44.

  20. Abramovich B.N., Lozovskii S.E., Tarasov D.M., Sychev Yu.A., Zagrivnyi Ya.E. Tsvetnye metally, 2008, no. 12, pp. 72-76.

  21. Saïd-Romdhane M.B.,Naouar M.W., Belkhodja I.S., Monmansson E. An improved LCL filter design in order to ensure stability without damping and despite large grid impedance variations. Energies, 2017, vol. 10, 19 p. DOI:10.3390/en10030336

  22. Monroy-Morales J.L., Campos-Gaona D., Hernández-Ángeles M., Pena-Alzola R., Guardado-Zavala J.L. An active power filter based on a three-level inverter and 3D-SVPWM for selective harmonic and reactive compensation. Energies, 2017, vol. 10, 23 p. DOI: 10.3390/en10030297

  23. Akagi H., Wattanabe E.H., Aredes M. Instantaneous Power Theory and Applications to Power Conditioning. IEEE Press on Power Engineering. Wiley-Interscience, A Jonh Wiley & Sons Inc., 2007, 389 p.

  24. Asinkhronnye elektrodvigateli, upravlyaemye ot preobrazovatelya chastoty. Tekhnicheskoe rukovodstvo kompanii WEG, 2013, http://www.weg.kiev.ua/pdf/WEG_elektrodv_upravl_ot_preobr_chastoty.pdf

  25. Kuznetsov P.A., Lisitsin A.N., Korshunov P.V. Mezhdunarodnyi forum-konkurs “Problemy nedropol'zovaniya”. Sbornik nauchnykh trudov. St. Petersburg, Sankt-Peterburgskii Gornyi universitet, 2017. Chast' II, pp. 207-208.

  26. Teubner B.G. Ulrich Riefenstahl Elektrische Antriebssysteme: Grundlagen, Komponenten, Regelverfahren, Bewegungssteuerung.Verlag/GWV Fachverlage GmbH, Wiesbaden, 2006, 458 s.

  27. Schröder D. Elektrische Antriebe – Regelung von Antriebssystemen. Springer-Verlag, Berlin Heidelberg. 2009, 1358 s.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI