Docking with space debris employing the unfolding flexible beam-strap

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Аuthors

Aslanov V. S.*, Yudintsev V. V.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: aslanov_vs@mail.ru
**e-mail: yudintsev@gmail.com

Abstract

For risk reduction of the uncontrolled growth of space debris number at the near Earth orbits, it is necessary to remove the most dangerous objects, such as the worked-out orbital stages of rocket carriers and non-operating spacecraft, which may be the sources of space debris. The most complicated stage of passive uncontrolled object's removal from an orbit is its capturing. Selection of capturing technique is determined by the type of space debris and its angular motion. For example, very often the orbital stages are being purposely spin-up around their transverse axis by jet nozzles to guarantee avoiding collision with the detached payload. It complicates capturing the object of such type by the space tug to remove them from the orbit. While employing manipulators or classical mechanisms of a beam-cone type for capturing, when the engine nozzle of a rocket carrier plays the role of the cone, significant overloads may occur in capturing units.

The presented article proposes employ for docking the expanded beam (strip) with aspect ratio. As in the classical docking technique, the nozzle of an orbital stage is being employed. The docking scheme being suggested allows reduce impact forces occurring while docking with rotating objects.

The docking assembly model was developed to study the effectiveness of the suggested scheme. The flexible beam was modeled by the system of solid bodies (beams) connected by cylindrical hinges. To imitate the bending stiffness a torsional spring was being installed in every hinge. The system model was developed using MSC.ADAMS CAE software. The system model was developed in MSC.ADAMS CAE software.

The process of docking with rotating orbital stage, using the three beams variants of large, medium and low stiffness, was analyzed through the developed model. While docking process, the reaction force value in the hinge, connecting the beam with the space tug hull, maximum tug angular velocity and the success of entire docking operation were controlled. The results of modeling confirmed the impact loads reduction while docking with reduction of the beam bending stiffness. The flexible beam will allow employ greater closing-in velocities with uncontrolled rotating objects of space debris to increase the successful docking probability. The beam elastic properties herewith allow reduce the effect of disturbance forces on the space tug while the beam contact with the docking surface of a docking port (nozzle).

Keywords:

space debris, space tug, docking, probe-cone mechanism, flexible beam-tape

References

  1. Bonnal C., Ruault J.M., Desjean M.C. Active debris removal: Recent progress and current trends. Acta Astronautica, 2013, vol. 85, pp. 51-60. DOI: 10.1016/j.actaastro.2012.11.009

  2. Aslanov V.S., Yudintsev V.V. Dynamics, analytical solutions and choice of parameters for towed space debris with flexible appendages. Advances in Space Research, 2015, vol. 55, no. 2, pp. 660 – 667. DOI: 10.1016/j.asr.2014.10.034

  3. Benvenuto R., Lavagna M.R. Flexible capture devices for medium to large debris active removal: simulations results to drive experiments. 12th Symposium on Advanced Space Technologies in Automation and Robotics, 2013.

  4. Botta E.M., Sharf I., Teichmann M., Misra A.K., Teichmann M. On the simulation of tether-nets for space debris capture with Vortex Dynamics. Acta Astronautica, 2016, vol. 123, pp. 91 – 102. DOI: 10.1016/j.actaastro.2016.02.012

  5. Botta E.M., Sharf I., Misra A.K. Contact dynamics modeling and simulation of tether nets for space-debris capture. Journal of Guidance, Control, and Dynamics, 2016, vol. 40, no. 1, pp. 110 –123. DOI: 10.2514/1.G000677

  6. Baranov A.A., Grishko D.A., Chernov N.V. Flyby of large-size space debris objects situated at leo with their successive de-orbiting. Science. Education. Bauman MSTU, 2016, vol. 16, no. 4, pp. 48 – 64. DOI: 10.7463/0416.0838417

  7. Oleinikov I.I., Pavlov V.P., Kovaleva M.V. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 5, pp. 32 – 37.
  8. Usovik I.V., Darnopykh V.V., Malyshev V.V. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 3, pp. 54 – 62.

  9. Benvenuto R., Salvi S., Lavagna M. Dynamics analysis and GNC design of flexible systems for space debris active removal. Acta Astronautica, 2015, vol. 110, pp. 247 – 265. DOI: 10.1016/j.actaastro.2015.01.014

  10. Zhai G., Qiu Y., Liang B, Li C. On-orbit capture with flexible tethernet system. Acta Astronautica, 2009, vol. 65, no. 56, pp. 613 – 623. DOI: 10.1016/j.actaastro.2009.03.011

  11. Lavagna M., Armellin R., Bombelli A., Benvenuto R. Debris removal mechanism based on tethered nets. International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS 2012), Torino, Italy, 04.0906.09.2012, 6 p. URL: https://eprints.soton.ac.uk/id/eprint/360808

  12. Aslanov V.S., Alekseev A.V., Ledkov A.S. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74644

  13. Syromyatnikov V.S. Stykovochnye ustroistva kosmicheskikh apparatov (Spacecraft docking devices), Moscow, Mashinostroenie, 1984, 216 p.

  14. 14.Fehse W. Automated Rendezvous and Docking of Spacecraft. Cambridge University Press, 2003, 516 p. DOI: 10.1017/CBO9780511543388

  15. Yaskevich A.V. Trudy MAI, 2015, no 83, available at: http://trudymai.ru/eng/published.php?ID=62062

  16. Trushlyakov V., Yudintsev V. Systems engineering design and optimization of an active debris removal mission of a spent rocket body using piggyback autonomous module. 3rd IAA Conference on Dynamics and Control of Space Systems DyCoSS 2017, 30 May 1 June 2017, Moscow, 2017, pp. 667– 681.

  17. Lagno O., Lipatnikova T., Makarov Y., Mironova T., Shatrov Y., Trushlyakov V., Yudintsev V. Parameters design of autonomous docking module and the choice of suitable target and primary payload for ADR. 7th European Conference on Space Debris ESOC, 18-21 April 2017. Darmstadt, Germany, 2017.

  18. Warren A.P., Lauderdale W.R. Method and apparatus for securing to a spacecraft. Patent US3508723A, 26.12.1967.

  19. Moody C.K., Probe A.B., Masher A., Woodbury T., Saman M., Davis J., Hurtado J.E. Laboratory Experiments for Orbital Debris Removal. AAS Guidance, Navigation, and Control Conference. Breckenridge, CO, 2016, 12 p.

  20. Portree D.S.F. Mir Hardware Heritage. Part 1 Soyuz, 2014, available at: https://en.wikisource.org/wiki/Mir_Hardware_Heritage/Part_1_-_Soyuz

  21. Zhang X., Huang Y., Chen X. Contact analysis of flexible beam during space docking process. Advances in Engineering Software. 2013, vol. 64, pp. 3846. DOI: 10.1016/j.advengsoft.2013.05.010

  22. Xiang Z., Yiyong H., Xiaoqian C., Wei H. Modeling of a space flexible probecone docking system based on the Kane method. Chinese Journal of Aeronautics, 2014, vol. 27, no 2, pp. 248258. DOI: 10.1016/j.cja.2014.02.020

  23. Dmitrochenko O.N., Mikhailov N.N., Pogorelov D.Yu. Dinamika i prochnost transportnykh mashin. Sbornik statei, Bryansk, BGTU, 1998, pp. 33 – 39.

  24. Panovko Ya.G. Vvedenie v teoriyu mekhanicheskogo udara (Introduction to mechanical shock theory), Moscow, Nauka, 1977, 224 p.

  25. Goldsmit V. Udar. Teoreticheskie i fizicheskie svoistva soudaryaemykh tel (Theoretical and physical properties of collided bodies), Moscow, Izdatelstvo literatury po stroitelstvu, 1965, 448 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI