Holes formation mechanism while laser perforation of metallized thermal vacuum blanket films

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Аuthors

Vyatlev P. A.*, Sergeev D. V.**, Sysoev V. K.***

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: vyatlev@laspace.ru
**e-mail: sergeevdv@laspace.ru
***e-mail: SysoevVK@laspace.ru

Abstract

Perforation of thermal vacuum blanket (TVB) films is performed to ensure vacuum and protection from electrostatic charges effect.

Method of film materials mechanical perforation is the most widely spread for TVB films perforation. With this kind of processing It is impossible to achieve high productivity and perforation accuracy.

Laser perforation of thin materials is one of the high-efficiency technologies for processing materials, and has a number of advantages, such as increasing productivity and perforation accuracy. This method allows quick adjustment of both the diameter, and perforation step.

Fiber repetitively-pulsed laser with the wave-length of 1,062 microns was selected as laser light source. Dot cutting along the hole outline was selected as a cutting scheme.

The process of fiber laser emission action on metalized polyamide films is accompanied by bushy flame in the operation area. The reduction of laser light power and processing speed herewith results in disappearance of bright light emission and significant increase of thermal influence area width up to 300 microns.

From our viewpoint, daisy chain of the following physical effects could serve as such mechanism:

– evaporation of aluminum coating;

– ionization of its vapors;

– impact of this plasma, combined with light power, on polymer, leading to the hole cutting.

One of the evidences of such hole formation mechanism is performed physical-chemical analysis of the obtained holes' edge. The holes edge was studied by electron microscope of JEOL JSM-5910LV series together with INCAENERGY analytic system. The major results of these measurements revealed the carbon content increase in the holes edge area, while oxygen and aluminum content reduced more than three times. Thus, it can be expected that physical process of holes formation with laser perforation of metallized TVB films takes place under combined action of light power and plasma of evaporated aluminum surface layer on polymer base of the film.

Keywords:

laser radiation, perforation, metalized polymer films

References

  1. Kovriga V.V., Andrianova N.V., Dobrokhotova M.L., Lure E.G. Plenochnye materialy. Polietilentereftalatnaya plenka PETF. Poliimidnaya plenka PM-1 (Film materials. Polyethylene terephthalate pet film. Polyimide film PM-1), Cherkassy, NIITEKhima, 1974, 28 p.

  2. Izolyatsiya teplovaya ekranno-vakuumnaya. Marki i tekhnicheskie trebovaniya. OST 92-1380-83 (Thermal screen-vacuum insulation. Brands and technical requirements. OST 92-1380-83), Moscow, Standarty, 1983, 37 p.

  3. Andreichuk O.B., Malakhov N.I. Teplovye ispytaniya kosmicheskikh apparatov (Thermal tests of spacecraft), Moscow, Mashinostroenie, 1982, 143 p.

  4. Barabanov A.A., Vyatlev P.A., Sergeev D.V., Sysoev V.K. Materialy konferentsii “Korolevskie chteniya”, Moscow, MGTU im. N.E. Baumana, 2013, http://www.ihst.ru/~akm/37t18.pdf

  5. Veiko V.P. Lazernaya obrabotka plenochnykh materialov (Laser processing of film materials), Leningrad, Mashinostroenie, 1986, 248 p.

  6. Bogdanov A.V., Golubenko Yu.V., Tyul'panova E.M. Naukoemkie tekhnologii v mashinostroenii, 2016, no. 10(64), pp. 33–38.

  7. Khisamieva L.G., Sharipova E.V. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2015, vol. 18, no. 6, pp. 137–138.

  8. Chesnokov D.V., Shergin S.L., Nikulin D.M. Interekspo Geo-Sibir'. 2007, vol. 4, no. 1, pp. 220–224.

  9. Kumpan E.V., Garifullina G.A. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, vol. 15, no. 14, pp. 123–125.

  10. Tabak i tabachnye izdeliya. Terminy i opredeleniya. GOST R 52463-2005 (Tobacco and tobacco products. Terms and definitions. State Standard R 52463-2005), Moscow, Standartinform, 2011, 16 p.

  11. Perforator bumagi WIREMAC ULTRAMAC, 2016, http://printmatik.ru/product/2455/

  12. Iijima M., Takahashi Y. Electrical, thermal and mechanical properties of polyimide thin films prepared by high-temperature vapor deposition polymerization. High Performance Polymers, 1993, vol. 5(3), pp. 229–237.

  13. Stepanova M. Lazernaya mikroobrabotka, http://www.mirprom.ru/public/lazernaya-mikroobrabotka.html

  14. Sravnenie lazerov razlichnykh tipov. Preimushchestva volokonnykh lazerov, 2005-2018, http://www.lazermaster.ru/files/misc/sravnenie_typov_l azerov.pdf

  15. Brunner W., Junge K. Wissensspeicher Lasertechnik. VEB Fachbuchverlag, Leipzig, 1982, 494 р.

  16. Barabanov A.A., Vyatlev P.A., Larchenko Yu.V., Sergeev D.V., Stekol'shchikov O.Yu., Suborev K.G., Sysoev V.K. Vestnik NPO im. S.A. Lavochkina, 2015, no. 2(28), pp. 58–63.

  17. Barabanov A.A., Vyatlev P.A., Sergeev D.V., Sysoev V.K. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 5, pp. 53-61.

  18. Libenson M.N., Yakovlev E.B., Shandybina G.D. Vzaimodeistvie lazernogo izlucheniya s veshchestvom (silovaya optika): Konspekt lektsii (Interaction of laser radiation with matter (power optics): Lecture notes), St. Petersburg, NIU ITMO, 2006. Part 2 – 152 p.

  19. 19. Konov V.I. Vzaimodeistvie lazernogo izlucheniya s veshchestvom. Silovaya optika (Interaction of laser radiation with matter. Power optics), Moscow, Fizmatlit, 2008, 308 p.

  20. Sysoev V.K., Bara banov A.A., Vyatlev P.A., SergeevD.V. Pisma o materialakh, 2015, vol. 5, no. 1(17), pp. 7-10.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI