Aeronautical and Space-Rocket Engineering
Design, construction and manufacturing of flying vehicles
Аuthors
*, **,Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia
*e-mail: ya_khmelnitsky@mail.ru
**e-mail: 2707fm@mail.ru
Abstract
At present, the extensive studies of outer space are carried out to obtain scientific, economic and military results.
The solar battery is an important element of a spacecraft since it ensures functioning of its equipment.
The solar battery should have high rigidity at maximum loading factor. The structure rigidity exerts a certain effect on oscillatory process and frequency characteristics while a spacecraft maneuvering. It determines also deformations of a solar battery while its transportation to a specified orbit.
Insufficient rigidity reduces the solar battery efficiency.
The dynamic analysis of solar battery envisages determination of natural oscillations shape and frequency, and a time of the oscillatory process termination.
From these positions, comparison of the two spacecraft “Spectr-R” and 14F150 is being considered.
The finite element models were developed for these occurring while the spacecraft turn along the longitudinal axis were determined.
The inherent characteristics of a solar battery structure were being determined by the finite element method employing “NASSTRAN” software.
To determine values of inherent dynamic characteristics of a solar battery panel a series of simulations of the product dynamics were performed with parameters variation of its mathematical model.
These parameters were determined by elastic and dissipative properties of the solar battery panel.
Comparison of stiffness coefficients values and inertial links damping for these types of spacecraft revealed that the solar panels impact on the dynamic characteristics of these spacecraft was practically the same.
The transient time was of 1000 seconds, which exceeded the admissible values. For the solar battery in the considered configuration, the first mode frequency should be of the order of 0.45 Hz with damping factor of the order of 0.1.
In the considered configuration of the panels, their rigidity characteristics should be 16 times, and dissipative characteristics −3 times greater.
Keywords:
solar battery, Spectr-R spacecraft, 14F150 spacecraft, finite element method, stiffness ratio, damring factor, angular velocity, vibration pitchReferences
-
Vanke V.A., Leskov L.V., Luk'yanov A.V. Kosmicheskie energosistemy (Space power systems), Moscow, Mashinostroenie, 1990, 144 p.
-
Alferov Zh.I., Andreev V.M., Rumyantsev V.D. Fizika i tekhnika poluprovodnikov, 2004, vol. 38, no. 8, pp. 937-948.
-
Lamzin V.V. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 5, pp. 46-55.
-
Marakhtanov M.K., Pil'nikov A.V. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 4, pp. 26-39.
-
Lamzin V.V. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 5, pp. 46-55.
-
Sysoev V.K., Pichkhadze K.M., Greshilov P.A., Verlan A.A. Solnechnye kosmicheskie elektrostantsii: puti realizatsii (Solar space power plants: ways for realization), Moscow, MAI, 2013, 159 p.
-
Okorokova N.S., Pushkin K.V., Sevruk S.D., Farmakovskaya A.A. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 4, pp. 115-122.
-
Bakulin V.N., Borzykh S.V., Ilyasova I.R. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 3, pp. 295-302.
-
Adamovich A.B. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 1, pp. 194-195.
-
Kehrle K., Kolax M. Sandwich structures for advanced next generation fuselage concepts. SAMPE Europe Technical Conference, Toulouse, France, 1314 September 2006, pp. 11-16.
-
11. Dreshler K., Kohrle R. Manufacturing of folded core-structures for technical applications. SAMPE Europe Conference, 2004, Paris, pp. 508-513.
-
Mikhailin Yu.A. Konstruktsionnye polimernye kompozitsionnye materialy (Structural polymer composite materials), St. Petersburg, NOT, 2010, 822 p.
-
Kolesnikov B., Vil'mes Kh., Kherbek D.L., Klyaineberg M. Materialy Mezhdunarodnoi konferentsii “Teoriya i praktika tekhnologii proizvodstva izdelii iz kompozitsionnykh materialov i novykh metallicheskikh splavov (TPKMM)”, Moscow, Znanie, 2004, pp. 736-741.
-
Bush A.V., Komissar O.N., Vymorkov N.V., Khmel'nitskii A.K., Lititskaya V.A., Bakhtin A.G., Olenin I.G. Materialy 4 Mezhdunarodnoi konferentsii “TPKMM. Korporativnye nano- i CALS-tekhnologii v naukoemkikh otraslyakh promyshlennosti, Moscow”, Znanie, 2006, pp. 725-727.
-
Bratukhin A.G. Aviatsionno-kosmicheskoe mashinostroenie: mezhdunarodnaya entsiklopediya CALS-tekhnologii (Aerospace engineering: international encyclopedia of CALS-technologies), Moscow, NITs ASK, 2015, 608 p.
-
Grashchenkov D.V., Chursova L.V. Aviatsionnye materialy i tekhnologii, 2012, no. S, pp. 231-242.
-
Khmel'nitskii Ya.A., Shirina O.V., Goncharov K.A. Materialy XX Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Konstruktsii i tekhnologii polucheniya izdelii iz nemetallicheskikh materialov”, Obninsk, GNTs RF ONPP “Tekhnologiya”, 2013, pp. 82-83.
-
Khmel'nitskii Ya.A., Shirina O.V. Materialy II Mezhdistsiplinarnogo molodezhnogo nauchnogo foruma s mezhdunarodnym uchastiem “Novye materialy” (01-04 June 2016, Sochi), Moscow, Interkontakt Nauka, 2016, pp. 28-30.
-
Matveev Yu.A., Lamzin V.V. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 6, pp. 55-66.
-
Kataev Yu.P. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2015, no. 3, pp. 49-55.
-
Zenkevich O. Metod konechnykh elementov v tekhnike (Finite element method in engineering), Moscow, Mir, 1975, 543 p.
-
Vakhitov M.B. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 1966, no. 3, pp. 50-61.
-
Paimushin V.N. Prikladnaya mekhanika, 1987, vol. 23, no. 11, pp. 32-38.
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |