Experimental study of radiofrequency cathode-neutralizer

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Smirnov P. E.*, Khartov S. A.**, Kashulin A. P.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: paulsmyt93@gmail.com
**e-mail: skhartov@ya.ru
***e-mail: ap-k@list.ru

Abstract

High specific impulse and low mass-flow rate of ion thrusters (IT) make them increasingly popular choice as a spacecraft propulsion system. Recent missions demonstrate the efficiency of these thrusters in such missions as orbit correction and exploration of Solar system. Moreover, there are many developing ideas of creating spacecraft with IT for wider spectrum of missions. However, IT needs to have a longer operation time, due to the small thrust (about several mN).

As a rule, such thrusters failure occurs due to the destruction of Ion Optics electrodes or failure of electron source. IT needs electron sources as a main cathode (for plasma producing), and as a cathode-neutralizer (to neutralize potentials of ion beam). Hollow cathodes are most used devices for Ion propulsion applications, due to low gas consumption and high electron current density.

Application of lanthanum hexaboride or tungsten with BaO impregnating as an emitter material, leads to the necessity of strict sustenance of hollow cathodes operational parameters. Interaction of emitter material with a small quantity of poison gas leads to its surface contamination and, as a consequence, to decreasing of the recoverable current even down to zero. It leads to more requirements to the gas purity, and hollow cathode handling prior to its placement in space. Moreover, to ensure effective operation, the emitter should be heated up to 0.6-0.8 of its melting temperature by the external heater, which, in turn, causes the emitter material evaporation (life span reduction), power consumption increase and longer cathode start-up procedure.

The problems of high reliability of traditional electron sources for ion thrusters led the authors to the idea apply them as cathode with plasma high-frequency discharge. In such device, plasma is generated and sustained by radiofrequency induction discharge. The absence of “loaded” (high temperature, powerful flows of charged particles) electrodes eliminates all problems of the cathode long-term operation provision. As with hollow cathode, the bulk plasma volume acts as an electron emitter, which allows generate high electron currents. The article describes the scheme of the prototype of this device, and the results of its experimental development. Currents generated by the high-frequency cathode were achieving up to 1.7 A at the input power of 120 W. Effectiveness evaluation of the high-frequency cathode is presented.

Keywords:

electron source, radiofrequency discharge, ion thruster cathode, cathode-neutraliser

References

  1. Vazhenin N.A., Obukhov V.A., Plokhikh A.P., Popov G.A. Elektricheskie raketnye dvigateli kosmicheskikh apparatov i ikh vliyanie na radiosistemy kosmicheskoi svyazi (Spacecraft electric propulsion thrusters and their ieffect on radio systems of space communication), Moscow, FIZMATLIT, 2012, 432 p.

  2. Gorshkov O.A., Muravlev V.A., Shagaida A.A. Khollovskie i ionnye plazmennye dvigateli dlya kosmicheskikh apparatov (Hall and ion plasma thrusters for spacecraft), Moscow, Mashinostroenie, 2008, 432 p.

  3. Obukhov V.A., Pokryshkin A.I., Popov G.A., Yashina N.V. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 3, pp. 30-40.

  4. Shabshelowitz Adam. Study of RF Plasma Technology Applied to Air-Breathing Electric Propulsion. Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Aerospace Engineering) in the University of Michigan, 2013, 188 p.

  5. Goebel Dan M., Katz Ira. Fundamentals of electric propulsion: Ion and Hall Thruster, Jhon Wiley & Sons, 2008, 508 p.

  6. Kanev S.V., Petukhov V.G., Popov G.A., Khartov S.A. Izvestiya Vuzov. Aviatsionnaya tekhnika, 2015, no. 3, pp. 35-40.

  7. Loyan A.V., Roshanpour S. Helicon Electron source for operation with aggressive propellant. 30-th International Electric Propulsion Conference, Wiesbaden, FRG, 11-15 Sept. 2011, IEPC-2011-256, available at: http://erps.spacegrant.org/uploads/images/images/iepc_articledownload_1988-2007/2011index/IEPC-2011-...

  8. Sato J., Torii N., Satoshi Kasagami, Ota C., Aoyagi J., Takegahara H. Effect on Electron Emission of Inductively Coupled Plasma Cathodes Length. 33th International Electric Propulsion Conference, Washington, USA, 6-10 Oct. 2013, IEPC-2013-435, available at: http://erps.spacegrant.org/uploads/images/images/iepc_articledownload_1988-2007/2013index/psuhn12d.p...

  9. Kuninaka H., Nishiyama K., Shimizu Y., Yamada T., Funaki I., Hosoda S., Koizumi H. Re-ignition of Microwave Discharge Ion Engines on Hayabusa for Homeward Journey. 30th International Electric Propulsion Conference, Florence, Italy, 17-20 Sept. 2007, IEPC-2007-9, available at: http://erps.spacegrant.org/uploads/images/images/iepc_articledownload_1988-2007/2007index/IEPC-2007-...

  10. Abgaryan V.K., Leb Kh.V., Obukhov V.A., Shkarban I.I. Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2012, no. 8, pp. 70-77.

  11. Kralkina E.A. Uspekhi fizicheskikh nauk, 2008, vol. 178, no. 5, pp. 519-540.

  12. Lotz B. Plasma physical and material physical aspects of the application of atmospheric gases as a propellant for Ion-Thruster of the RIT Type assessment – dissertation for the degree of Doctor of Philosophy (Natural Sciences). University of Giessen (FB −07 Physics), May 2013, 139 p.

  13. Loeb H.W., Schartner K.H., Meyer B.K., Feili D., Weis St., Kirmse D. Forty Years of Giessen EP-Activities and the Recent RIT-Microthruster Development. 29th International Electric Propulsion Conference, Princeton University, Princeton, USA, 31 Oct. 4 Nov. 2005, IEPC-2005-031, available at: http://erps.spacegrant.org/uploads/images/images/iepc_articledownload_1988-2007/2005index/031.pdf

  14. Hatakeyama T., Irie M., Watanabe H., Okutsu A., Aoyagi J., Takegahara H. Preliminary study on Radio Frequency Neutralizer for Ion Engine. 30th International Electric Propulsion Conference, Florence, Italy, 17-20 Sept. 2007, IEPC-2007-226, available at: http://erps.spacegrant.org/uploads/images/images/iepc_articledownload_1988-2007/2007index/IEPC-2007-...

  15. Feili D., Collingwood C.M., Lotz B., Loeb H. W., Musso F., Di Cara D. Trudy MAI, 2012, no. 60, available at: http://trudymai.ru/eng/published.php?ID=35404

  16. 16. Raitses Y., Hendryx J.K., Fisch N.J. A Parametric Study of Electron Extraction from a Low Frequency Inductively coupled RF-Plasma Source. 31st International Electric Propulsion Conference, University of Michigan, USA, 20-24 Sept. 2009, available at: http://erps.spacegrant.org/uploads/images/images/iepc_articledownload_1988-2007/2009index/IEPC-2009-...

  17. Jahanbakhsh S., Celik M. Theoretical Investigation and Modeling of Current Extraction from a Radio-Frequency Cathode. AIAA Propulsion and Energy Forum, Cleveland, Ohio, USA, 2830 July. AIAA 2014-3402. DOI: 10.2514/6.2014-3402

  18. Leiter H.J., Loeb H.W., Schartner K.-H.The RIT15 Ion Engines A survey of the present state of Radio-Frequency Ion Thruster technology and its future potentiality. Spacecraft Propulsion, Third International Conference held 10-13 October, 2000 at Cannes, France. Edited by R.A. Harris. European Space Agency ESASP-465, 2001, pp. 423-432.

  19. Abgaryan V.K., Kruglov K.I. Materialy XIX Mezhdunarodnoi konferentsii po vychislitelnoi mekhanike i sovremennym prikladnym programmnym sistemam (VMSPPS 2015, Alushta, Russia, 2015, pp. 25-27.

  20. Kalitin S.A., Obukhov V.A, Shalamov M.M. Vestnik Moskovskogo aviatsionnogo instituta, 1995, vol. 2, no. 2, pp. 34-38.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI