Photometric informational method for unmanned aerial vehicles localization

Aeronautical and Space-Rocket Engineering

Control and testing of flying vehicles and their systems


Аuthors

Mamedov I. E.

National Aerospace Agency of Azerbaijan Republic, NASA, 1, Suleyman Sani Akhundov str., Baku, AZ1115, Azerbaijan Republic

e-mail: i.mamedov09@gmail.com

Abstract

One of major factors affecting the successful UAV performing reconnaissance tasks is the possibility of its coordinates exact localization. The UAV position estimation in such systems is usually performed employing such features as reference points, margins or other images informative elements. Application of such characteristic as reciprocal information for this purpose is also possible. The major shortage of these methods consist in complexity of this function computation in real time scale. The presented article suggests the method, generalizing the main features of localization techniques based on reciprocal information calculation. In contrast to the well-known solutions, localization with the suggested technique is performed based on both information characteristics and optical illuminance characteristics of the analyzed images of various formats. The resemblance of real scene herewith with geo-referenced image is computed by subtracting them from the information characteristics, and for accuracy and reliability of the obtained result, the localization is performed based on multi-format geo-referenced images of the object. The localization problem is solved with this method as a problem of minimization of difference of the total volumes of information, obtained from the real object and reference image in the mode of studying the multi-format frames while meeting some additional condition, specified on total illuminance of the studied and compared images. As applied to the considered problem of the UAV localization, the obtained solution ensures maximum difference of estimations of information volume in the ground scene under study and geo-referenced image. The author concluded that the optimal selection should be considered as such a desired functional dependence, which differs to the greatest extent from the calculated function characterizing the studied extreme localization mode.

Keywords:

localization, UAV, integral information criterion, target functional, unconditional variational optimization

References

  1. Ahrens S., Levine D., Andrews G., How J.P. Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied. IEEE International Conference on Robotics and Automation (ICRA'09), Kobe, Japan. 2009, pp. 2643-2648. DOI: 10.1109/ROBOT.2009.5152680

  2. Caballero F., Merino L., Ferruz J., Ollero A. Vision-based odometry and SLAM for medium and high altitude flying UAVs. Unmanned Aircraft Systems: International Symposium On Unmanned Aerial Vehicles (UAV'08). 2009, pp. 137-161. DOI 10.1007/978-1-4020-9137-7_9

  3. Artieda J., Sebastian J.M., Campoy P., Correa J.F., Mondragón I.F., Martínez C., Olivares M. Visual 3-D SLAM from UAVs. Journal of Intelligent & Robotic Systems, 2009, vol. 55, no. 4-5, pp. 299-321. DOI: 10.1007/s10846-008-9304-8

  4. Blösch M., Weiss S., Scaramuzza D., Siegwart R. Vision based MAV navigation in unknown and unstructured environments. IEEE International Conference on Robotics and Automation (ICRA'10). 2010, pp. 21-28. DOI: 10.1109/ROBOT.2010.5509920

  5. Kim J.H., Sukkarieh S. Airborne simultaneous localisation and map building. IEEE International Conference on Robotics and Automation (ICRA03), Taipei, Taiwan. 2003. Vol. 1, pp. 406-411. DOI: 10.1109/ROBOT.2003.1241629

  6. Kim N.V., Bodunkov N.E., Krylov I.G. Vtoroi Vserossiiskii nauchno-prakticheskii seminar “Bespilotnye transportnye sredstva s elementami iskusstvennogo intellekta (BTS-II-2015)”. Sbornik statei, St. Petersburg, Politekhnika-servis, 2015, pp. 42-49.

  7. Buival A.K. Vtoroi Vserossiiskii nauchno-prakticheskii seminar “Bespilotnye transportnye sredstva s elementami iskusstvennogo intellekta (BTS-II-2015)”. Sbornik statei, St. Petersburg, Politekhnika-servis, 2015, pp. 10-17.

  8. Afanas'ev I.M., Sagitov A.G., Danilov I.Yu., Magid E.A. Vtoroi Vserossiiskii nauchno-prakticheskii seminar Bespilotnye transportnye sredstva s elementami iskusstvennogo intellekta (BTS-II-2015). Sbornik statei, St. Petersburg, Politekhnika-servis, 2015, pp. 18-25.

  9. Bokovoi A.V. Vtoroi Vserossiiskii nauchno-prakticheskii seminar “Bespilotnye transportnye sredstva s elementami iskusstvennogo intellekta (BTS-II-2015)”. Sbornik statei, St. Petersburg, Politekhnika-servis, 2015, pp. 26-33.

  10. Lemaire T., Berger C., Jung I., Lacroix S. Vision–Based SLAM: Stereo and Monocular Approaches // International Journal of Computer Vision, 2007, vol. 74, no. 3, pp. 343-364. DOI: 10.1007/s11263-007-0042-3

  11. Maksimov N.A., Skleimin Yu.B., Sharonov A.V. Vestnik Moskovskogo aviatsionnogo institute, 2015, vol. 22, no. 3, pp. 30-39.

  12. Grumondz V.T., Polishchuk M.A. Vestnik Moskovskogo aviatsionnogo institute, 2014, vol. 21, no. 4, pp. 7-12.

  13. Conte G., Doherty P. An integrated UAV navigation system based on aerial image matching. IEEE Aerospace Conference, 2008, Big Sky, MT, USA, рр. 3142-3151. DOI: 10.1109/AERO.2008.4526556

  14. Saripalli S., Montgomery J.F., Sukhatme G.S. Visually guided landing of an unmanned aerial vehicle. IEEE Robotics and Automation Society, 2003, vol. 19, no. 3, pp. 371-380. DOI: 10.1109/TRA.2003.810239

  15. Ganesan A., Gireesh Kumar R.N. Vision based autonomous landing of an unmanned aerial vehicle. Procedia Engineering, 2012, vol. 38, рр. 2250-2256. DOI: 10.1016/j.proeng.2012.06.271

  16. Anitha G., Gireesh Kumar R.N. Vision based autonomous landing of an unmanned aerial vehicle. Procedia Engineering, 2012, vol. 38, рр. 2250-2256. DOI: 10.1016/j.proeng.2012.06.271

  17. Sim D.-G., Park R.-H., Kim R.-Ch., Lee S. U., Kim I.-Ch. Integrated position estimation using aerial image sequences. IEEE Pattern Analysis and Machine Intelligence (PAMI), 2002, vol. 24, no. 1, 18 p. DOI: 10.1109/34.982881

  18. Martínez C., Mondragón I.F., Campoy P., Sánchez-López J.L., Olivares-Méndez M.A. A hierarchical tracking strategy for vision-based applications on-board UAVs. Journal of Intelligent & Robotic Systems, 2013, vol. 72, no. 3-4, pp. 517-539. DOI: 10.1007/s10846-013-9814-x

  19. Dame A., Marchand E. Second-order optimization of mutual information for real-time image registration. IEEE Image Processing, 2012, vol. 21, no. 9, pp. 4190-4203. DOI: 10.1109/TIP.2012.2199124

  20. Viola P., Wells W. Alignment by maximization of mutual information. International Journal of Computer Vision, 1997, vol. 24, no. 2, pp. 137-154. DOI: 10.1109/ICCV.1995.466930

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI