Intelligent systems application while spacecraft flight operational control

Aeronautical and Space-Rocket Engineering

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Lebedeva N. V.*, Solov'ev S. V.**

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: trigonella@mail.ru
**e-mail: sergey.soloviev@scsc.ru

Abstract

To perform automation of a spacecraft state control, it is necessary to define the scope of tasks, which are most dangerous from the viewpoint of their accuracy of estimate. Intelligent systems application whileoperational flight control does not assume the complete waiving from human in the control loop. It should complement his activities by in-depth and rapid evaluation of a vast amount of information, and help to elaborate the correct reaction to the current state of a spacecraft.

While operational efficiency computation, the nominal time t and its technological delay ∆t , spent for evaluation, is assumed as the main control criterion. This technological delay is associated with the time of data receiving from the spacecraft. The spacecraft normal operation evaluation is important as the main reference point for monitoring of its state changing.

While various operations execution the type of commands issued to the onboard systems to ensure the operation execution, capability of their issuing, as well as the ways of technical evaluation of the state of their execution are accounted for. For control automation, it is necessary also to account for the pre-planned possibilities of organized (nonrandom) effecting affecting its state. From the analysis viewpoint, the flight operation execution switches the spacecraft to a new state. Evaluation of the flight operation and the new state of the spacecraft is the purpose of the flight operation controlling.

The monitoring process includes also performing diagnostics of the spacecraft state. More than one point of its state herewith is determined for the current time (interval). Intelligent system application allows employ all previous diagnostic results and represents the dynamics of the development of the process of changing the technical characteristics of the spacecraft in the past, which can be used to the forecast systematic correcting and increasing its validity.

Operation of the intelligent system in real time mode will allow increase the response rate to anomalies occurrence and their development in time with accurate fixation of the drift of data deviation development. An essential advantage of such systems can be the immunity to accidental failures, such as information loss, as well as the determination of non-obvious changes, which might become a forerunner of failures.

Keywords:

control, spacecraft, on-line analysis, flight operation, mining, display format

References

  1. Kravets V.G., Lyubinskii V.E. Osnovy upravleniya kosmicheskimi poletami (Basics of Space Flight Control), Moscow, Mashinostroenie, 1983, 256 p.

  2. Solovev V.A., Lysenko L.N., Lyubinskii V.E. Upravlenie kosmicheskimi poletami (Space flights control), Moscow, MGTU im. N.E.Baumana, 2009. Part 1 — 476 p. Part 2 — 426 p.

  3. Ushakov A.P., Brega A.N., Kovalenko A.A., Chernobrovkin S.G. Upravlenie poletom orbitalnoi stantsii Mir. Kontseptsiya avtomatizirovannogo planirovaniya I upravleniya. (Orbital station Mir Flight control. Automated planning and control concept), Kaliningrad, RKK Energiya im. S.P. Koroleva, 1995, 243 p.

  4. Leonov A.G., Dovgodush S.I., Petrovskii V.S. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 2, pp. 208-216.

  5. Berge C. The theory of graphs and its applications. 1962. New York, John Wiley & Sons, 247 p.

  6. Muggleton S., De Raedt L. Inductive Logic Programming: Theory and methods. The Journal of Logic Programming, 1994, vol. 19-20, pp. 629–679. DOI: 10.1016/0743-1066(94)90035-3

  7. Barsegyan A.A., Kupriyanov M.S., Stepanenko V.V., Kholod I.I. Metody i modeli analiza dannykh: OLAP I Data Mining (Methods and models of data analysis: OLAP and Data Mining: tutorial), St. Petersburg, BKhV-Peterburg, 2004, 336 p.

  8. Derevyanko V.V. Issledovaniya naukograda, 2012, no. 1, pp. 47-51.

  9. Solovev S.V., Mishurova N.V. Inzhenernyi zhurnal: nauka i innovatsii, 2016, no. 3(51), available at: http://engjournal.ru/catalog/arse/adb/1474.html DOI: 10.18698/2308-6033-2016-3-1474

  10. Urlichich Yu.M. Nazemnyi kompleks upravleniya dalnimi kosmicheskimi apparatami. Perspektivy razvitiya (Ground control complex for long-range spacecraft. Development prospects), Moscow, Radiotekhnika, 2012, 214 p.

  11. Lukin F.A., Shakhmatov A.V., Mushovets K.V. Zelenkov P.V. Vestnik SibGAU, 2012, no. 5(45), pp. 140-143.

  12. Nazarov A.V., Kozyrev G.I., Shitov I.V., Obruchenkov V.P., Drevin A.V. Sovremennaya telemetriya v teorii i na praktike (Modern telemetry in theory and in practice), St. Petersburg, Nauka i tekhnika, 2007, 672 p.

  13. Militsin A.V., Samsonov V.K., Khodak V.A., Litvak I.I. Otobrazhenie informatsii v tsentre upravleniya kosmicheskimi poletami (Displaying information in space flight control center), Moscow, Radio i svyaz, 1982, 194 p.

  14. Solovev S.V. Inzhenernyi zhurnal: nauka i innovatsii, 2016, no. 2(50), available at: http://engjournal.ru/catalog/arse/adb/1469.html DOI: 10.18698/2308-6033-2016-2-1469

  15. Oleinikov I.I., Pavlov V.P., Kovaleva M.V. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 5, pp. 32-37.

  16. Knyazev A.V. Vestnik Moskovskogo aviatsionnogo instituta. 2002, vol. 9, no. 2, pp. 38-43.

  17. Pisarenko V.N. Vestnik Moskovskogo aviatsionnogo instituta. 2018, vol. 25, no. 1, pp. 67-75.

  18. Mironova K.V. Metody matematicheskogo modelirovaniya upravleniya malymi kosmicheskimi apparatami na osnove traektornoi informatsii (of Mathematical modeling methods for small spacecraft control based on trajectory data). Doctors thesis, Ryazan, Ryazanskii gosudarstvennyi radiotekhnicheskii universitet, 2015, 184 p.

  19. Abramov N.S., Ardentov A.A., Emelyanova Yu.G., Talalaev A.A., Fralenko V.P. , Shishkin O.G. Programmnye sistemy: teoriya i prilozheniya, 2015, vol. 6, no. 2(25), pp. 85–99.

  20. Stupak G.G., Lyubinskii V.E., Koryanov V.V. et. al. Avtomatizirovannaya sistema upravleniya poletom perspektivnykh kosmicheskikh apparatov i kompleksov (Automated flight control system for advanced spacecraft and complexes), Moscow, MGTU im. N.E. Baumana, 2012. Part 3 – 439 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI