Hybrid energy storage device in power supply system for prospective spacecraft

Electrical Engineering

Electrical engineering complexes and systems


Аuthors

Nadaraia T. G.1*, Selivanov A. I.1*, Shestakov I. Y.2**, Fadeev A. A.2***, Vinogradov K. N.3****

1. Design, implementation of new equipment, 75, Svobodny av., Krasnoyarsk, 660041, Russia
2. Siberian State University of Science and Technology named after academician M.F. Reshetnev, 31, Krasnoyarsky Rabochy av., Krasnoyarsk, 660014, Russia
3. Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041, Russia

*e-mail: svoy_2010@list.ru
**e-mail: yakovlevish@mail.ru
***e-mail: fadeev.77@mail.ru
****e-mail: V1nogradov-KN@yandex.ru

Abstract

The article presents the improved version of spacecraft power supply system by rational selection of the hybrid power plant basic elements. Power supply system is the most important onboard system from the viewpoint of energy supply and reliability. Failure of this system entails failure of the whole spacecraft.

The main types of power plants, such as a combination of solar and chemical batteries, installations based on various physical phenomena, and electrodynamic tether systems, as well as nuclear ones are known.

Rational selection of the power-plant basic elements to solve specific problems allows improve technical, mass-and-size and cost characteristics of a spacecraft in total.

The improvement of the power supply system energy efficiency is achieved by special schematic architecture and joint application of chemical and kinetic energy storage devices. The hybrid energy storage device will allow maintain the required energy supply of the onboard equipment and compensate peak energy consumption onboard a spacecraft. This energy storage device includes ionistors. Ionistors serve to compensate fast transients while the installation start-up in orbit. Compensation of the occurring kinetic moment is realized by installing two energy storage devices operating in antiphase. Application of contactless, magnetic, high-temperature super-semiconductor suspension in the flywheel allows significantly reduce mechanical losses and increase the storage time of the stored kinetic energy.

The principle of the above said installation operation in both energy storing mode and energy return to the system to consumers' mode is described. The hybrid energy storage device operation in the process of energy return takes place with rotation speed changing, which leads to the necessity of solving the problem of obtaining the AC of stable frequency at the output. This problem is being solved directly by rotating converter or a specialized inverter. Smoothing the peak loads on the battery by ionistors and the lack of brush gear increase the lifespan of the hybrid energy storage device.

Indicative computations show that application of the hybrid energy storage device allow improve mass-and-size characteristics of the power supply system by 24%. The suggested approach will be employed in further activities associated with enhancing the energy-mass perfection of the spacecraft power supply system.

Keywords:

rechargeable lithium-ion battery, energy storage device, prospective spacecraft, power supply system, flywheel, power-to-weight ratio, ionistor

References

  1. Chebotarev V.E., Kosenko V.E. Osnovy proektirovaniya kosmicheskikh apparatov informatsionnogo obespecheniya (Fundamentals of spacecraft for dataware design), Krasnoyarsk, SibGAU, 2011, 488 p.

  2. Belan N.V., Bezruchko K.V., Eliseev V.B., Kovalevskii V.V., Letin V.A., Postanogov V.P., Fedorovskii A.N. Bortovye energosistemy kosmicheskikh apparatov na osnove solnechnykh i khimicheskikh batarei (Spacecraft onboard power systems based on solar and chemical batteries), Kharkov, KhAI, 1992. Part 1 – 191 p.

  3. Kvasnikov L.A., Latyshev L.A., Ponomarev-Stepnoi N.N., Sevruk D.D., Tikhonov V.B. Teoriya i raschet energosilovykh ustanovok kosmicheskikh letatel'nykh apparatov (Spacecraft power-plants theory and design), Moscow, MAI, 2001, 480 p.

  4. Khudyakov S.A. Kosmicheskie energoustanovki (Space power-plants), Moscow, Znanie, 1984, 64 p.

  5. Soustin B.P., Ivanchura V.I., Chernyshev A.I., Islyaev Sh.N. Sistemy elektropitaniya kosmicheskikh apparatov (Spacecraft power supply systems), Novosibirsk, Nauka, 1994, 316 p.

  6. Narimanov E.A. Kosmicheskie solnechnye elektrostantsii (Space solar electric power-plants), Moscow, Znanie, 1991, 63 p.

  7. Skrebushevskii B.S. Kosmicheskie energeticheskie ustanovki s preobrazovaniem solnechnoi batarei (Space power-plant with solar cell conversion), Moscow, Mashinostroenie, 1992, 224 p.

  8. Luk'yanenko M.V., Luk'yanenko M.M., Lovchikov A.N., Bazilevskii A.B. Istochniki energii system elektrosnabzheniya kosmicheskikh apparatov (Energy sources of spacecraft power supply systems), Krasnoyarsk, SibGAU, 2008, 174 p.

  9. Shinbrot S., Koggi Dzh. Voprosy kosmicheskoi energetiki, Moscow, Mir, 1971, pp. 36-58.

  10. Marakhtanov M.K., Pilnikov A.V. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 4, pp. 26–39.

  11. But D.A., Alievskii B.L., Mizyurin S.R., Vasyukevich P.V. Nakopiteli energii (Energy storages), Moscow, Energoatomizdat, 1991, 400 p.

  12. Nizhnikovskii E.A. Khimicheskie istochniki avtonomnogo elektropitaniya radioelektronnoi apparatury (Chemical self-contained power supplies for radio electronic equipment), Moscow, MEI, 2004, 228 p.

  13. Vasich P.S., Dezhin D.S., Kovalev L.K., Kovalev K.L., Poltavets V.N. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 2, pp. 65-76.

  14. Nadaraia Ts.G., Shestakov I.Ya., Fadeev A.A., Vinogradov K.N., Nadaraia K.V., Selivanov A.I. Patent RU 2637489 C1, 05.12.2017.

  15. Vyshkov Yu.D., Reznikov S.B. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 3, pp. 127–133.

  16. Zinov'ev G.S. Osnovy silovoi elektroniki (Fundamentals of power electronics), Novosibirsk, NGTU, 2003, 664 p.

  17. Nadaraia Ts.G., Shestakov I.Ya., Fadeev A.A., Vinogradov K.N., Mikhalev D.N. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva, 2016, vol. 17, no. 4, pp. 983–988.

  18. Vivekchand S.R.C., Rout Sekhar Chandra, Subrahmanyam K. S., Govindaraj A., Rao C.N.R. Graphene-based electrochemical supercapacitors. Journal of Chemical Sciences, 2008, vol. 120, no. 1, pp. 9–13.

  19. Korovin N.V., Skundin A.M. Khimicheskie istochniki toka (Chemical current sources), Moscow, MEI, 2003, 740 p.

  20. Bibikov S.B., Maltsev A.A., Koshelev B. V., Zudov K.A., Kudrov M.A. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 2, pp. 185–194.

  21. Superkondensatory (Super Capacitors), http://eef.misis.ru/sites/default/files/lectures/3-4+Tema+6.+Superkondensatory.pdf

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI