Evaluation of layered aluminum-fiberglass plastic effective mechanical characteristics in conditions of uniaxial tensile

Metallurgy and Material Science

Material science


Аuthors

Antipov V. V.1*, Dobryansky V. N.2**, Korolenko V. A.2***, Lurie S. A.3****, Serebrennikova N. Y.1*****, Solyaev Y. O.4******

1. All-Russian Scientific Research Institute of Aviation Materials. State Research Center of the Russian Federation, 17, Radio str., Moscow, 105005, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
3. Institute of Applied Mechanics of Russian Academy of Science, IAM RAS, 32a, Leninskii av., Moscow, В-334, GSP-1, 119991, Russia
4. Institute of Applied Mechanics of Russian Academy of Science, IPRIM RAS, 7, Leningradskiy Prospekt, Moscow, 125040, Russia

*e-mail: antipovvv@viam.ru
**e-mail: dobryanskijvn@mai.ru
***e-mail: korolenko.vmir@gmail.com
****e-mail: salurie@mail.ru
*****e-mail: serebrennikova-viam@mail.ru
******e-mail: yos@iam.ras.ru

Abstract

The article presents the results of laminated aluminum-fiberglass composite material, formed by thin layers of aluminum alloy and fiberglass, mechanical characteristics modeling. A modified analytical model of layered material accounting for the presence of metal elastic-plastic layers in the composite structure with bilinear defining relationships is being employed for calculations. For the case of uniaxial tensile, the layer-by-layer analysis of the composite strength is being performed with account for residual tensions formed while the material fabrication. The Tsai-Hill strength criterion was used for fiberglass layers. The moment of yielding commence in metal layers is being determined by Mises criterion. The calculation results determined effective strength characteristics, yield stress and strength limit of composites in conditions of uniaxial tensile. The good agreement of calculation results and experimental data within the 90% of accuracy limits was shown.

The effective Young's modulus of the material in the calculations was 51.5 GPa (49 GPa in the experiment). The apparent yield stress of the composite, associated with the appearance of plasticity in the layers of aluminum, was 230 MPa, which in fact coincides with the experiment. The composite ultimate strength in calculation was 540 MPa (585 MPa in the experiment). In fact, it follows fr om the calculations that the yield stress of metal-polymer composite is determined by aluminum layers yield stress, while the strength limit is determined by the strength lim it of fiberglass layers oriented in the direction of load action. The proposed model allows evaluate the effect of residual tensions on the material mechanical strength characteristics. The results of calculations established that the residual tensions might lead to the composite mechanical properties degradation.

Keywords:

aluminum-fiber plastic, layered composite, tensile tests, progressive fracture, strength prognosis, residual tensions

References

  1. Antipov V.V., Serebrennikova N.Yu., Senatorova O.G., Morozova L.V., Lukina N.F., Nefedova Yu.N. Vestnik mashinostroeniya, 2016, no. 12, pp. 45-49.

  2. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdullin M.R., Limonin M.V. Perspektivnye materialy, 2016, no. 10, pp. 5-19.

  3. Shestov V.V., Antipov V.V., Serebrennikova N.Yu., Nefedova Yu.N. Tekhnologiya legkikh splavov, 2016, no. 1, pp. 119-123.

  4. Kablov E.N. Aviatsionnye materialy i tekhnologii, 2015, no. 1 (34), pp. 3-33. DOI: 10.18577/2071-9140-2015-0-1-3-33

  5. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Vestnik MGTU im N.E. Baumana. Seriya: Mashinostroenie, 2011, no. SP2, pp. 174-183.

  6. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Aviatsionnye materialy i tekhnologii, 2016, no. 3(42), pp. 3-8.

  7. Sinmaz Çelik Tamer, Avcu Egemen, Bora Mustafa Özgür, Çoban Onur. A review: Fibre metal laminates, background, bonding types and applied test methods. Materials & Design, 2011, vol. 32, no. 7, pp. 3671-3685. DOI: 10.1016/j.matdes.2011.03.011

  8. Wu G., Yang J. M. The mechanical behavior of GLARE laminates for aircraft structures. Jom, 2005, vol. 57, no. 1, pp. 72-79. DOI: 10.1007/s11837-005-0067-4

  9. Morinière F.D., Alderliesten R.C., Benedictus R.  Modelling of impact damage and dynamics in fibre-metal laminates – A review. International Journal of Impact Engineering, 2014, vol. 67, pp. 27-38. DOI: 10.1016/j.ijimpeng.2014.01.004

  10. Shetty B.P., Reddy S., Mishra R.K. Finite Element Analysis of an Aircraft Wing Leading Edge Made of GLARE Material for Structural Integrity. Journal of Failure Analysis and Prevention, 2017, vol. 17, no. 5, pp. 948-954. DOI: 10.1007/s11668-017-0331-2

  11. Dandekar A.M. Finite Element Analysis of Composite Aircraft Fuselage Frame. Thesis for the degree of Master of Science in Aerospace Engineering. The University of Texas at Arlington, 2017, 57 p.

  12. Iaccarino P., Langella A., Caprino G. A simplified model to predict the tensile and shear stress-strain behaviour of fibreglass/aluminium laminates. Composites Science and Technology, 2007, vol. 67, no. 9, pp. 1784-1793. DOI: 10.1016/j.compscitech.2006.11.005

  13. Kamocka M., Zglinicki M., Mania R.J. Multi-method approach for FML mechanical properties prediction. Composites. Part B: Engineering, 2016, vol. 91, pp. 135-143. DOI: 10.1016/j.compositesb.2016.01.014

  14. Moussavi-Torshizi S. E., Dariushi, S., Sadighi M., Safarpour P. A study on tensile properties of a novel fiber/metal laminates. Materials Science and Engineering: A. 2010, vol. 527, no. 1819, pp. 4920-4925. DOI: 10.1016/j.msea.2010.04.028

  15. Kawai M., Morishita M., Tomura S., Takumida K. Inelastic behavior and strength of fiber-metal hybrid composite: Glare. International Journal of Mechanical Sciences, 1998, vol. 40, no. 2-3, pp. 183-198. DOI: 10.1016/S0020-7403(97)00048-9

  16. Wu H.F., Wu L.L., Slagter W.J., Verolme J.L. Use of rule of mixtures and metal volume fraction for mechanical property predictions of fiber-reinforced aluminum laminates. Journal of Materials Science, 1994, vol. 29, no. 17, pp. 4583-4591. DOI: 10.1007/BF00376282

  17. Vlot A., Gunnink J.W. Fibre Metal Laminates: An Introduction. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001, 535 p. DOI 10.1007/978-94-010-0995-9

  18. Ergun H., Liaw B.M., Delale F. Experimental-theoretical predictions of stressstrain curves of Glare fiber metal laminates. Journal of Composite Materials, 2017, vol. 52, no. 1, pp. 109-121. DOI: 10.1177/0021998317702954

  19. Soltani P., Keikhosravy M., Oskouei R.H. Studying the tensile behavior of GLARE laminates: a finite element modeling approach. Applied Composite Materials, 2011, vol. 18, no. 4, pp. 271-282. DOI: 10.1007/s10443-010-9155-x

  20. Chen J.L., Sun C.T. Modeling of orthotropic elastic-plastic properties of ARALL laminates. Composites science and technology, 1989, vol. 36, no. 4, pp. 321-337. DOI: 10.1016/0266-3538(89)90045-6

  21. Vasil'ev V.V., Protasov V.D., Bolotin V.V. Kompozitsionnye materialy (Composite materials), Mosscow, Mashinostroenie, 1990, 512 p.

  22. Afanas'ev A.V., Dudchenko A.A., Rabinskii L.N. Inzhenernaya fizika, 2010, no. 7, pp. 13-20.

  23. Afanas'ev A.V., Dudchenko A.A., Nguen D.K., Rabinskii L.N., Solyaev Yu.O. Mekhanika kompozitsionnykh materialov i konstruktsii, 2014, vol. 20, no. 3. pp. 333-342.

  24. Jones R.M. Mechanics of Composite Materials. CRC Press, 1998, 538 p.

  25. Chzho A.L., Artem'ev A.V., Rabinskii L.N., Afanas'ev A.V., Semenov N.A., Solyaev Yu.O. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 197-208.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI