A method of light alloys reinforcing by aero-thermoacoustic treatment for aerospace industry

Metallurgy and Material Science

Material science


Аuthors

Kalugina M. S.1*, Remshev E. Y.1**, Danilin G. A.1, Vorob'eva G. A.1***, Telnov A. K.2****

1. Baltic State Technical University “VOENMEH ” named after D.F. Ustinov, 1, 1st Krasnoarmeyskaya str., Saint Petersburg, 190005, Russia
2. Tekhmash SPb, 137, build. 1, Primorsky av., office 352N, Saint Petersburg, 197374, Russia

*e-mail: mash-kalugin@yandex.ru
**e-mail: Remshev@mail.ru
***e-mail: Labmetcontrol@inbox.ru
****e-mail: aleks.telnov@tehmachspb.ru

Abstract

The article studies the possibility of developing technological basics of higher mechanical properties of aluminum casting alloys ensuring, and wrought aluminum alloy while employing aero-thermoacoustic treatment (ATAT).

The share of aluminum allows employed in aviation industry is high. Thus, both casting and wrought alloys find application in aerospace industry. Casting aluminum alloys are used for containers and tanks production. In machine building such casting aluminum alloys as silumin are widely spread.

Aluminum wrought alloys present great interest, due to their higher mechanical properties. They are used for aircraft hulls manufacturing. The above said alloys are employed for manufacturing prefabricated shells of aircraft hulls, representing rigid encasements of rather rigid sheet material, which should resist normal and tangent forces and carry all types of loads.

ATAT employing enables increasing the strength of silumins about 1.4 times, practically with preserving elasticity at the initial level or its slight reduction. Significant holding time reduction was observed as well.

The article studies ways of increasing strength characteristics of extra-high tensile wrought aluminum alloy without significant loss of plastic properties of the material.

The article studies ways of increasing strength characteristics of high-strength wrought aluminum alloy without significant loss of plastic properties of the material.

The ATAT effect on the structure and properties of aluminum casting alloys was revealed, which could be associated with the process of micro-plastic deformation and partial recrystallization while treatment, with diffusion processes acceleration, which ensures grinding of solid solution grains. The redistribution and reduction of macro and microstrains in the material significantly affects its properties.

Keywords:

aero-thermoacoustic treatment, acoustic emission method, thermal treatment, microstructure, mechanical properties, reliability

References

  1. Osimi O., Ganiev I.N., Nazarov Kh.M., Berdiev A.E. Doklady Akademii Nauk Respubliki Tadzhikistan, 2013, vol. 56, no. 10, pp. 805-810.

  2. Mosin A.I., Sklyamina A.V., Shutov I.V., Orlova N.A., Krivilev M.D. Vestnik udmurtskogo universiteta. Seriya: Fizika i Khimiya, 2014, no. 4-3, pp. 23-29.

  3. Vorob'eva G.A., Remshev E.Yu. Metally, 2016, no. 2, pp. 24-28.

  4. Remshev E.Yu., Danilin G.A., Vorob'eva G.A., Silaev M.Yu. Metallurg, 2015, no. 3, pp. 48-51.

  5. Kalugina M.S., Remshev E.Yu., Danilin G.A., Vorobeva G.A., Pekhov V.A. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 185-196.

  6. Pogorelov Yu.A., Lyashko F.E. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2011, vol. 13, no. 4(2), pp. 469-474.

  7. Bespalov D.A., Vorob'eva G.A., Danilin G.A., Remshev E.Yu. Metalloobrabotka, 2016, no. 1(91), pp. 41-47.

  8. Abramov V.O., Abramov O.V., Artem'ev V.V., Gradov O.M., Kolomeets N.P., Prikhod'ko V.M., El'darkhanov A.S. Moshchnyi ultrazvuk v metallurgii i mashinostroenii (Powerful ultrasound in metallurgy and mechanical engineering), Moscow, Yanus-K, 2006, 687 p.

  9. Abramov O.V. Vozdeistvie moshchnogo ul'trazvuka na zhidkie i tverdye metally (Strong ultrasound effect in liquid and solid metals), Moscow, Nauka, 2000, 311 p.

  10. Vatolin N.A., Pastukhov E.A. Tekhnologiya metallov, 2004, no. 1 – pp. 2-8, no. 2 –  pp. 2-6.

  11. Kim Chang Sik Tekhnologicheskie i strukturnye zakonomernosti ul'trazvukovoi finishnoi i uprochnyayushchei obrabotki konstruktsionnykh i instrumental'nykh materialov (Technological and structural regularities of ultrasonic finishing and hardening treatment of structural and tool materials). References of Doctors thesis, Moscow, MGIU, 2005, 25 p.

  12. Kruglov V.V., Sorokin V.M., Puchkov V.P. Elektrofizikokhimicheskie i kombinirovannye metody obrabotki (Electrophysical chemical and combined methods of treatment), Nizhnii Novgorod, NGTU, 1998, 93 p.

  13. Markov A.I. Ul'trazvukovaya obrabotka materialov (Ultrasonic treatment of materials), Moscow, Mashinostroenie, 1980, 237 p.
  14. Markov A.I., Ivkin E.I., Bekrenev N.V. STIN, 1996, no. 12, pp. 23-27.

  15. Kholopov Yu.V. Metallobrabotka, 2002, no. 2, pp. 46-48.

  16. Osipenkova G.A., Filimonov I.E., Dracheva L.A. Progressivnye tekhnologii i sistemy mashinostroeniya, Sbornik statei, Donetsk, Don-NTU, 2008, no. 36, pp. 134-142.

  17. Osipenkova G.A., Pegashkin V.F., Filimonov I.E. Vestnik mashinostroeniya, 2009, no. 2, pp. 74-75.

  18. Prikhod'ko V.M. Ul'trazvukovye tekhnologii pri proizvodstve i remonte tekhniki (Ultrasonic technology in machinery production and maintenance), Moscow, Tekhpoligraftsentr, 2000, 252 p.

  19. Vologin M.F., Kalashnikov V.V., Nerubai M.S., Shtrikov B.L. Primenenie ul'trazvuka i vzryva pri obrabotke i sborke (Ultrasound and explosion employing while treatment and Assembly), Moscow, Mashinostroenie, 2002, 264 p.

  20. Aleksandrov M.K., Papsheva N.D., Akushskaya O.M. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva, 2011, no. 3-1(27), pp. 271-275.

  21. Tyapunina N.A., Silis M.I., Podsoblyaev D.S., Bushueva G.V., Bogunenko V.Yu. Materialovedenie, 2003, no. 11, pp. 2-8.

  22. Gorelik S.S., Rastorguev L.N., Skakov Yu.A. Rentgenograficheskii i elektronograficheskii analiz metallov (X-ray and electron diffraction analysis of metals), Moscow, Metallurgizdat, 1963, 256 p.

  23. Konovalov D.I., Shirvan'yants G.G. Molodoi uchenyi (Kazan), 2015, no. 22(102), pp. 141-147.

  24. Libby C.C. Sonic Reveting of Aircraft Aluminum Alloys. IEEE Transactions on Sonics and Ultrasonics, 1969, vol. 16, no. 3, pp. 117 – 125. DOI: 10.1109/T-SU.1969.29513

  25. Wang F., Liu H., Ma Y., Jin Y. Effect of Si content on the dry sliding wear properties of spray-deposited Al Si alloy. Materials & Design, 2004, vol. 25, no. 2, pp. 163–166. DOI: 10.1016/j.matdes.2003.08.005

  26. Muratoрlu M., Aksoy M. The effects of temperature on wear behaviours of Al Cu alloy and Al Cu/SiC composite. Materials Science and Engineering: A. 2000, vol. 282, no. 1-2, pp. 91–99. DOI: 10.1016/S0921-5093(99)00767-4

  27. Cho S.S., Chun B.S., Won C.W., Kim H.K., Lee B.S., Yim K.H., Eom S.H., Baek H., Song B.J., Suryanarayana C. Microstructure and mechanical properties of rapidly solidified hypereutectic Al-Si and Al-Si-Fe alloys. Journal of Materials Synthesis and Processing, 1998, vol. 6, no. 2, pp. 123-131.

  28. Singh R., Khamba J.S. Investigation for ultrasonic machining of titanium and its alloys. Journal of Materials Processing Technology, 2007, vol. 183, no. 2-3, pp. 363-367. DOI: 10.1016/j.jmatprotec.2006.10.026

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI