Development and analysis of civil aircraft concepts employing integration principles

Aeronautical and Space-Rocket Engineering

Design, construction and manufacturing of flying vehicles


Аuthors

Bolsunovskii A. L.*, Bondarev A. V.**, Gurevich B. I.***, Skvortsov E. B.****, Chanov M. N.*****, Shalashov V. V.******, Shelekhova A. S.*******

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: bolsun@progtech.ru
**e-mail: bondarevram@mail.ru
***e-mail: gurevich-tsagi@yandex.ru
****e-mail: skvortsov-tsagi@yandex.ru
*****e-mail: arzmax@bk.run
******e-mail: nio-10@tsagi.ru
*******e-mail: anna.shelekhova@tsagi.ru

Abstract

The search for the technologies allowing significantly improve operational characteristics of the prospective civil aircraft was the goal of the work.

The study of innovative technologies, including those, providing the airframe and engine integration, was performed applying methods of alternatives analysis, based on the factorial analysis, and experiments planning assuming performing a series of computing experiments with subsequent comparison of their results.

Three possible innovations trends were considered:

– application of a turbojet engine with the increased bypass ratio for the fuel consumption and noise-at-terrain reduction;

– application of the so-called distributed power plant with the separated gas generator and the fan connected by mechanical transmission;

– airframe and power plant elements integration for obtaining useful effects in aerodynamics and structure, as well as and obtaining new operational properties.

According to these independent principles a number of the long-haul aircraft possible configurations, differing by various combinations of the bypass ratio, the turbojet schemes and technologies of elements integration into the “airframe + engine” system was developed. The number of possible strategies of the integral aircraft, including the base option, corresponds to the number of binomial coefficient of the three factors 23 = 8 according to performing the full-factorial experiment.

A multidisciplinary expert assessment of aircraft configuration options was performed, which turned into the basis for the most effective concepts selection.

Comparison of possible characteristics revealed that some options of airframe and engine integration under consideration had potential for considerable of fuel consumption reduction compared to the conventional long-haul aircraft configuration. The results of the study allow recommend two strategies for further studies. These strategies also possess potential for additional improvement of the other operational characteristics, such as noise-at-terrain and operating safety. Other configurations possess a number of useful elements that can find application while critical technologies development and reduction of technical risks.

Keywords:

multi-disciplinary expertise, airframe elements integration, power plant, bypass ratio, innovative technologies

References

  1. Skvortsov E.B., Shelekhova A.S. Uchenye zapiski TsAGI, 2017, vol. 48, no. 5, pp. 54-62.

  2. Skvortsov E.B. Direct search in conceptual design. Acta Politechnica. Journal of Advanced Engineering, 2000, vol. 40, no. 1, pp. 24-29.

  3. Sidel'nikova O.V., Matveev Yu.A. Vestnik Moskovskogo aviatsionnogo instituta, 2011, vol. 18, no. 1, pp. 27-32.

  4. Kovalenko A.I., Petrash V.Ya. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 4, pp. 65-72.

  5. Ermakov S.M., Brodskii V.Z., Zhiglyavskii A.A. Matematicheskaya teoriya planirovaniya eksperimenta (Mathematical theory of experiment planning), Moscow, Fizmatlit, 1983, 392 p.

  6. Adler Yu.P., Markova E.V., Granovskii Yu.V. Planirovanie eksperimenta pri poiske optimalnykh uslovii (Experiment planning in search of optimal conditions), Moscow, Nauka, 1976, 280 p.

  7. Badyagin A.A., Eger S.M., Mishin V.F., Sklyanskii F.I., Fomin N.A. Proektirovanie samoletov (Aircraft design), Moscow, Mashinostroenie, 1972, 516 p.

  8. Eger S.M., Mishin V.F., Liseitsev N.K. Proektirovanie samoletov (Aircraft design), Moscow, Mashinostroenie, 1983, 616 p.

  9. Byushgens G.S. Aerodinamika i dinamika poleta magistral'nykh samoletov (Aerodynamics and flight dynamics of long-haul aircraft), Moscow-Pekin, Izdatelskii otdel TsAGI — Avia-Izdatelstvo KNR, 1995, 772 p.

  10. Lavrukhin G.N. Aerogazodinamika reaktivnykh sopel. T. 1. Vnutrennie kharakteristiki sopel (Aerogasdynamics of jet nozzles. Vol. 1. Internal characteristics of nozzles), Moscow, Fizmalit, 2003, 376 p.

  11. Lavrukhin G.N., Popovich K.F. Aerogazodinamika reaktivnykh sopel. T. 2. Obtekanie donnykh ustupov potokom gaza Aerogasdynamics of jet nozzles. Vol. 2. Flow of bottom ledges by the gas stream), Moscow, Fizmatlit, 2009, 312 p.

  12. Lavrukhin G.N., Ivan'kin M.A., Talyzin V.A. Aerogazodinamika reaktivnykh sopel. T. 3. Vneshnee soprotivlenie i poteri effektivnoi tyagi sopel (Aerogasdynamics of jet nozzles. Vol. 3. External drag and loss of effective nozzle thrust), Moscow, Fizmatilit, 2016, 1309 p.

  13. Shul'gin V.A., Gaisinskii S.Ya. Dvukhkonturnye turboreaktivnye dvigateli maloshumnykh samoletov (Bypass turbojet engines of low-noise aircraft), Moscow, Mashinostroenie, 1984, 168 p.

  14. Dvigateli gazoturbinnye aviatsionnye. Ponyatiya, sostav i kontrol' massy. GOST 17106-90 (Aircraft gas turbine engines. Concepts, composition and weight control. State Standard 17106-90), Moscow, Standarty, 1990, 15 p.

  15. Petrov V.K., Uskov A.S. Trudy TsAGI, issue 2175, Moscow, Izdatel'skii otdel TsAGI, 1983, 32 p.

  16. Barinov V.A. Trudy TsAGI, issue 2205, Moscow, Izdatel'skii otdel TsAGI, 1983, 48 p.

  17. Bragazin V.F., Semenov A.A., Skvortsov E.B., Shalashov V.V. Tekhnika vozdushnogo flota, 2013, no. 4 (713), pp. 25-31.

  18. Lavrukhin G.N., Skvortsov E.B., Talyzin V.A., Shelekhova S.V. Uchenye zapiski TsAGI, 2014, vol. 45, no. 4, pp. 59-64.

  19. Skvortsov E.B., Bragazin V.F., Bolsunovskii A.L., Lavrukhin G.N., Samokhin V.F., Semenov A.A., Chernavskikh Yu.N., Shalashov V.V., Shelekhova S.V. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Aviadvigateli XXI veka”, Moscow, TsIAM imeni P.I. Baranova, 2015, pp. 166-168.

  20. Skvortsov E.B., Biryuk V.I., Buzoverya N.P., Gurevich B.I., Ivanyushkin A.K., Kazhan A.V., Kuksa V.I., Lavrukhin G.N., Mikhailov Yu.S., Samokhin V.F., Svyatodukh V.K., Skomorokhov S.I., Chanov M.N., Shalashov V.V. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Aviadvigateli XXI veka”, Moscow, TsIAM imeni P.I. Baranova, 2015, pp. 168-170.

  21. Glushkov N.N., D'yachevskii A.P., Skvortsov E.B. Trudy TsAGI, issue 2655 “Chislennye metody aerodinamicheskogo proektirovaniya”, Moscow, Izdatelskii otdel TsAGI, 2002, pp. 59-65.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI