Machine-building Engineering and Machine Science
Machine science, drive systems and machinery
Аuthors
1, 2*, 2**1. Shanghai Aircraft Design and Research Institute Commercial Aircraft Corporation of China, Shanghai, China, 201210
2. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China, 200240
*e-mail: yuzf@sjtu.edu.cn
**e-mail: fuyi2015@sjtu.edu.cn
Abstract
This paper presents an innovative energy absorber consisting of an inward folding of composite tube, which is cut axially and turned into the inner of the itself. There is no excess of composite fragments after the composites destruction, and the debris will fill in the inner part of tube to increase the energy absorption. The impact energy is absorbed mainly by the fibers fractures, as well as delamination and friction between composite tube and the cylinder wall of the cap. Impact tests were performed to study the energy absorption performance. To study the shock absorber effect on the shock-resistance of the helicopter crew seat, a four-degree-of-freedom nonlinear biodynamic model corresponding to 50th-percentile male occupant was developed. The simulation results revealed a good shock-absorber shock-resistance performance.
Keywords:
Shock Absorber, Inward-folding, Composite, Helicopter seat, Biodynamic modelReferences
-
Hamada H., Ramakrishna S. Effect of fiber material onenergy absorption behaviour of thermoplastic composite tubes. Thermoplastic Composite Materials, 1996, vol. 9, pp. 259–279. DOI: 10.1177/089270579600900304
-
Chiu C.H., Lu C.K., Wu C.M. Crushing characteristics of 3 D braided composite square tubes. Composite Materials, 1997, vol. 31, no. 22, pp. 2309-2327. DOI: 10.1177/002199839703102205
-
Jacob G.C., Fellers J.F., Simunovic S., Starbuck J.M. Energy absorption in polymer composites for automotive crashworthiness. Composite Materials, 2002, vol. 36, pp. 813–849.
-
Farley G.L. Energy absorption of composite materials. Composite Materials, 1983, vol. 17, no. 3, pp. 267–279. DOI: 10.1177/002199838301700307
-
Thornton P.H. Energy absorption in composite structures. Composite Materials, 1979, vol. 13, pp. 247–262. DOI: 10.1177/002199837901300308
-
Hamada H., Coppola J.C., Hull D., Maekawa Z., Sato H. Comparison of Energy Absorption of Carbon/Epoxy and Carbon/Peek Composite Tubes. Composites, 1992, vol. 23, no. 4, pp. 245–252. DOI: 10.1016/0010-4361(92)90184-V
-
Dubey D.D., Vizzini J.A. Energy absorption of composite plates and tubes. Composite Materials, 1998, vol. 32, no. 2, pp. 158–176. DOI: 10.1177/002199839803200204
-
Thornton P.H., Harwood J.J., Beardmore P. Fiber-reinforced plastic composites for energy absorption purposes. Composites Science and Technology, 1985, vol. 24, no. 4, pp. 275–298. DOI: 10.1016/0266-3538(85)90026-0
-
Thornton P.H., Edwards P.J. Energy absorption in composite tubes. Composite Materials, 1982, vol. 16, no. 1, pp. 521–545. DOI: 10.1177/002199838201600606
-
Mamalis A.G., Yuan Y.B., Viegelahn G.L. Collapse of thin-wall composite sections subjected to high speed axial loading. Vehicle Design, 1992, vol. 13, no. 56, pp. 564–579. DOI: 10.1504/IJVD.1992.061748
-
Hull D. A unified approach to progressive crushing of fiber-reinforced composite tubes. Composites Science and Technology, 1991, vol. 40, no. 4, pp. 377–421. DOI: 10.1016/0266-3538(91)90031-J
-
Farley G.L. Effect of specimen geometry on the energy absorption capability of composite materials. Composite Materials, 1986, vol. 20, no. 4, pp. 390–400. DOI: 10.1177/002199838602000406
-
Farley G.L., Jones R.M. Crushing characteristics of continuous fiber-reinforced composite tubes. Composite Materials, 1992, vol. 26, no. 1, pp. 37–50. DOI: 10.1177/002199839202600103
-
Brachos V., Douglas C.D. Energy absorption characteristics of hybrid composite structures. 27th International SAMPE Technical Conference, Albuquerque, NM, 1995, pp. 421–435.
-
Mamalis A.G., Robinson M., Manolakos D.E., Demosthenous G.A., Ioannidis M.B., Carruthers J.J. Crashworthy capability of composite material structures. Composite Structures, 1997, vol. 37, no. 2, pp. 109–134. DOI: 10.1016/S0263-8223(97)80005-0
-
Fasanella E.L., Jackson K.E., Sparks C.E., Sareen A.K. Water impact test and simulation of a composite energy absorbing fuselage section. American Helicopter Society, 2005, vol. 50, no. 2, pp. 150-164. DOI: 10.4050/1.3092852
-
Meng F.X., Zhou Q., Yang J.L. Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage. Crashworthiness, – 2009, vol. 14, no. 1, pp. 83–97. DOI: 10.1080/13588260802517360
-
Fasanella E.L., Jackson K.E., Kellas S. Soft soil impact testing and simulation of aerospace structures. 10th International LS-DYNA Users Conference, Dearborn, MI, 2008, pp. 18-29 – 18-42. URL: https://www.dynalook.com/international-conf-2008/SimulationTechnology5-2.pdf/at_download/file
-
Palanivelu S., Paepegem W., Degrieck J., Ackeren J., Kakogiannis D., Hemelrijck D., Wastiels J., Vantomme J. Experimental study on the axial crushing behavior of pultruded composite tubes. Polymer Testing, 2010, vol. 29, no. 2, pp. 224–234. DOI: 10.1016/ j.polymertesting. 2009.11.005
-
Palanivelu S., Paepegem W., Degrieck J., Vantomme J., Kakogiannis D., Ackeren J., Hemelrijck D., Wastiels J. Crushing and energy absorption performance of different geometrical shapes of small-scale glass/polyester composite tubes under quasi-static loading conditions. Composite Structures, 2011, vol. 93, no. 2, pp. 992–1007. DOI: 10.1016/j.compstruct.2010.06.021
-
Pein M., Heimbs S. Innovative energy-absorbing concept for aircraft cabin interior. International Workshop on Aircraft System Technologies (AST 2007), Hamburg, Germany, pp. 375–384.
-
Garner D.M., Adams D. Test methods for composites crashworthiness: a review. Advanced Materials, 2008, vol. 40, no. 4, pp. 5–26.
-
Meredith J., Ebsworth R., Coles S.R., Wood B.M., Kirwan K. Natural fiber composite energy absorption structures. Composites Science and Technology, 2012, vol. 72, no. 2, pp. 211–217. DOI: 10.1016/j.compscitech.2011.11.004
-
Taher S.T., Zahari R., Ataollahi A., Mustapha F., Basri S. A double-cell foam-filled composite block for efficient energy absorption under axial compression. Composite Structures, 2011, vol. 89, no. 3, pp. 399–407. DOI: 10.1016/j.compstruct.2008.09.005
-
Heimbs S., Strobl F., Middendorf P., Guimard J.M. Composite Crash Absorber for Aircraft Fuselage Applications. 11th International Conference on Structures under Shock and Impact (SUSI 2010, Tallinn, Estonia), vol. 113, pp. 3-14. DOI: 10.2495/SU100011
-
Siromani D., Henderson G., Mikita D., Mirarchi K., Park R., Smolko J., Awerbuch J., Tan T.-M. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression. Composites Part A: Applied Science and Manufacturing, 2014, vol. 64, pp. 25-35. DOI: 10.1016/j.compositesa.2014.04.019
-
Liu X.X., Shi J., Li G.H., Le X., Zhao B., Yue M., Liu J., Bai G., Ke W. Biodynamic Response and Injury Estimation of Ship Personnel to Ship Shock Motion Induced by Underwater Explosion. 69th Shock and Vibration Symposium, St. Paul, 1998, vol. 18, pp. 1-18.
-
Patil M.K., Palanichamy M.S., Ghista D.N. Dynamic Response of Human Body Seated on a Tractor and Effectiveness of Suspension Systems. 21st Stapp Car Crash Conference-P-073, SAE 1977. Transactions-V86-A, vol. 86. Section 4: 770720771010, pp. 3221-3235. DOI: 10.4271/770932
-
Singh H.J., Wereley N.M. Biodynamic Model of a Seated Occupant Exposed to Intense Impacts. AIAA Journal, 2015, vol. 53, no. 2, pp. 426-435. DOI: 10.2514/1.J053193
-
Jackson K.E., Fasanella E.L., Boitnott R., McEntire J., Lewis A. Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter. American Helicopter Society, 2002, vol. 49, no. 2, pp. 127-139. DOI: 10.4050/JAHS.49.127
-
Guimard J.M., Allix O., Pechnik N., Thevenet P. Energetic analysis of fragmentation mechanisms and dynamic delamination modelling in CFRP composites. Computers & Structures, 2009, vol. 87, no. 1516, pp. 1022-1032. DOI: 10.1016/j.compstruc.2008.04.021
mai.ru — informational site of MAI Copyright © 1994-2024 by MAI |