Uniaxial gyrostabilizer application for the gyroscopic stabilization system in self-contained control systems

Electrical Engineering


Аuthors

Bazhenov N. G.*, Filina O. A.**, Ozerova E. Y.*

Kazan State Power-Engineering University, KSPEU, 51, Krasnoselskaja str., Kazan, Republic of Tatarstan, 420059, Russia

*e-mail: kgey-et@yandex.ru
**e-mail: olga_yuminova83@mail.ru

Abstract

The proposed unit relates to the field of navigation technology. This type of gyroscopic devices is the simplest and low cost compared to a rotary gyroscope. Single-axis and dual-axis gyroscopes, widely used for movement direction determining, are wellknown, by now, both in civil and military spheres. The main disadvantage of the now-employed gyroscopes is a low speed of the oriented direction determining, reaching up to several minutes. The proposed gyrocompass allows significantly reduce the above said disadvantage and at the same time dramatically improve the accuracy in the “North-South” direction determining. It aims at improving accuracy and speed in the “North-South” orientation determining. This type of gyroscope is much simpler and low cost at commensurable accuracy compared to a rotary gyroscope. The article presents a kinematic scheme of the HS, which allows implement a twin-axis perturbation control method. With this, it allows achieving the required control dynamic characteristics; stabilization accuracy, and the kinematic moment values by selecting the appropriate transfer coefficients Its main property consists in the ability to hold fixed direction of the axis of rotation in space in the absence of the external forces impact on it. This gyroscopic device structure consists of a gyroscope with a rotor of a “brick" shape; communication on angular deviations through amplifiers; torque sensors; and standard stabilizing motors. Thus, the whole complexity of the device consists in the gyro rotor manufacturing, and float chambers in particular. The proposed unit operates in the following way. At the effect of the moment on one of the axes, the rotor gyroscopic moment appears. Pulsating signals along the perpendicular axis appear as well. Thus, there are two types of signals, which can be employed to stabilize the object containing the above said unit is installed. These findings are supported by the presented equations, where  are expressions for the deviations on the two axes. The gyrostabilizer motion was considered in the mathematical model under condition that the values of the moment of inertia on the axes α and β , with account for the presence of additional inserts, would be expressed in the form:  . Thus, the equations were composed with account for these expressions.

The said unit allows find application in the aircraft automatic devices systems.

Keywords:

gyrostabilizer, gyro instrument, vibratory gyroscope, magnetic flux, gyro motor, reallocation dynamics, float dynamic characteristics, piezoelectric gyroscopes

References

  1. Matveev V.A., Podchezertsev V.P., Fateev V.V. Giroskopicheskie stabilizatory na dinamicheski nastraivaemykh vibratsionnykh giroskopakh (Gyroscopic stabilizers for dynamically tuned vibratory gyroscopes), Moscow, MGTU im. N.E. Baumana, 2014, 176 p.

  2. Anuchin O.N., Emel'yantsev G.I. Integrirovannye sistemy orientatsii i navigatsii dlya morskikh podvizhnykh ob''ektov (Integrated orientation and navigation systems for marine mobile objects), St. Petersburg, TsNII “Elektropribor”, 2003, 390 p.

  3. Besekerskii V.A., Popov E.P. Teoriya system avtomaticheskogo upravleniya (Theory of automatic control systems), St. Petersburg, Professiya, 2003, 752 p.

  4. Fateev V.V., Kuleshov A.V., Nosov N.A. Vestnik MGTU im. N.E. Baumana. Priborostroenie, 2002, no. 3(48), pp. 119–134.

  5. Binder Ya.I. Giroskopiya i navigatsiya, 2003, no. 2 (41), pp. 38–46.

  6. Bol'shakov A.A. Matematicheskoe modelirovanie raboty integrirovannykh besplatformennykh sistem orientatsii I navigatsii lokal'nogo naznacheniya (Mathematical modeling of integrated gimbailess orientation and navigation systems for local purposes), Doctors thesis, Saratov: SGTU, 2004, 21 p.

  7. Loper E.J., Lynch D.D. Vibratory rotation sensor. Patent US 4 951 508A, 28.08.1990.

  8. Dzhashitov V.E., Pankratov V.M. Matematicheskie modeli teplovogo dreifa giroskopicheskikh datchikov inertsial'nykh sistem (Mathematical models of gyroscopic sensors for inertial systems thermal drift), St. Petersburg, GNTs RF TsNII “Elektropribor”, 2001, 150 p.

  9. Loper E.J., Lynch D.D., Stevenson K.M. Projected performance of smaller hemispherical resonator gyros. PLANS'86 – Position Location and Navigation Symposium, Las Vegas, 1986, pp. 61–64.

  10. Dzhashitov V.E., Pankratov V.M. Datchiki, pribory I sistemy aviakosmicheskogo i morskogo priborostroeniya v usloviyakh teplovykh vozdeistvii (Sensors, devices and systems of aerospace and marine instrument-making in conditions of thermal impacts), St. Petersburg, GNTs RF TsNII “Elektropribor”, 2005, 404 p.

  11. Bazhenov N.G., Filina O.A., Valeeva P.N., Ermakova E.Yu. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravlenie, vychislitelnaya tekhnika i informatika, 2017, no. 2, pp. 136-144. DOI: 10.24143/2072-9502-2017-2-136-144

  12. Bazhenov N.G., Filina O.A., Ermakova E.Yu. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova, 2017, vol. 9, no. 5, pp. 1104-1112. DOI: 10.21821/2309-5180-2017-9-5-1104-1112

  13. Bazhenov N.G., Bakirov A.R., Filina O.A. Materialy V Mezhdunarodnoi konferentsii “Problemy mekhaniki sovremennykh mashin”. Sbornik statei. Ulan-Ude, Vostochno-Sibirskii gosudarstvennyi universitet tekhnologii i upravleniya, 2012, pp. 29-33.

  14. Bomshtein K.G., Parshina T.M., Stankevich A.I. Vestnik Moskovskogo aviatsionnogo instituta, 1995, vol. 2, no. 2, pp. 74-78.

  15. Panteleev A.V., Pimenov P.V. Vestnik Moskovskogo aviatsionnogo instituta, 1998, vol. 5, no. 2, pp. 49-56.

  16. Danilin A.N., Tyutyunnikov N.P., Shalashilin V.I. Vestnik Moskovskogo aviatsionnogo instituta, 1999, vol. 6, no. 1, pp. 67-71.

  17. Tishkov V.V., Firsanov V.V. Vestnik Moskovskogo aviatsionnogo instituta, 1999, vol. 6, no. 2, pp. 8-14.

  18. Leonov V.A., Niyazmand M.A., Poplavskii B.K. Vestnik Moskovskogo aviatsionnogo instituta, 1999, vol. 6, no. 2, pp. 56-59.

  19. Gordeev A.A., Efimov B.V., Il'in S.A., Sobolev V.I. Vestnik Moskovskogo aviatsionnogo instituta, 1999, vol. 6, no. 2, pp. 72-75.

  20. Berns V.A., Bobryshev A.P., Prisekin V.L., Samuilov V.F. Vestnik Moskovskogo aviatsionnogo instituta, 2008, vol. 15, no. 1, pp. 87-91.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI