Theoretical justification of the possibility of reducing vibrations of electromagnetic origin in a five-phase alternating current machine in comparison with a three-phase machine

Electrical Engineering

Electrical engineering complexes and systems


Аuthors

Tereshkin V. M.

Ufa State Aviation Technical University, USATU, 12, K. Marx str., Ufa, 450008, Republic of Bashkortostan, Russia

e-mail: tvm53@mail.ru

Abstract

Multiphase electric machines with an odd number of phases can become an alternative to three-phase machines in areas where a stable rotation speed within one revolution of the shaft is required, as well as other areas requiring highly reliable electric drives with low noise and vibration, for example in special ventilation systems and complexes .

The problem of formation of the resulting current of 3-phase and 5-phase windings, which are fed from the bridge converter, is considered in the work. A comparative analysis of the resulting currents is given from the point of view of the harmonic composition. In solving the problem, a classical approach was used with the use of the vector method.

It was found that the components of the phase currents of the 5-phase symmetrical winding form the 1st and 11th harmonics of the resulting forward current and the 9th harmonic of the reverse sequence.

The third and seventh harmonics of the phase currents do not form a rotating field; their temporal alternation does not coincide with the spatial alternation of phases. The 5th harmonic of the resulting current is absent; in the phase-current spectrum of a 5-phase symmetrical winding, the 5th harmonic component is not contained.

The components of the phase currents of the 3-phase symmetrical winding form the 1st and 7th harmonics of the resulting forward current, as well as the 5th and 11th harmonic of the reverse sequence.

The 3rd and 9th harmonics of the resulting current are absent, because in the phase-current spectrum of the 3-phase symmetrical winding, the 3rd and 9th harmonic components are not contained.

By harmonic composition, the resultant current of the 5-phase winding takes precedence over the resultant current by a 3-phase winding. This allows us to assume that within the period of the first harmonic (fundamental rotation frequency) in a 5-phase winding, the vibrations of electromagnetic origin will be less than for the three phase windings.

Experimental studies of prototypes of 5-phase and 3-phase synchronous machines made using identical magnetic systems have shown that the level of mechanical vibrations of a 5-phase machine is lower than that of a 3-phase machine.

Keywords:

five-phase motor winding, three-phase motor winding, resultant harmonic vectors of the phase currents of the five-phase winding, resulting vectors of the harmonics of the phase currents of the three-phase winding, braking the field of the resultant phase current vectors of the five-phase winding

References

  1. Chan C.C. The State of the Art of Electric, Hybrid and Fuel Cell Vehicles. Proceedings of the IEEE, 2007, vol. 95, no. 4, pp. 704-718. DOI: 10.1109/JPROC.2007.892489

  2. Chan C.C., Bouscayrol A. and Chen K. Electric, Hybrid, and Fuel-Cell Vehicles: Architectures and Modeling. IEEE Transact Vehicular Technol, 2010, vol. 59, no. 2, pp. 589–598. DOI: 10.1109/TVT.2009.2033605

  3. Global EV Outlook: Understanding the Electric Vehicle Landscape to 2020. Electric Vehicle Initiative, International Energy Agency, 2013, 41 p.

  4. Elektrovoz gruzovoi postoyannogo toka 2ES10 (Granit) s asinkhronnymi tyagovymi elektrodvigatelyami. URI: https://www.twirpx.com/file/502379/

  5. Levi E., Bojoi R., Profumo F., Toliyat H.A. and Williamson S. Multiphase induction motor drives – a technology status review. Institution of Engineering and Technology Electric Power Applic, 2007, vol. 1, no. 4, pp. 489-516. DOI: 10.1049/iet-epa:20060342

  6. Dwari S. and Parsa L. Fault–Tolerant Control of Five–Phase Permanent–Magnet Motors With Trapezoidal Back EMF. IEEE Transactions on Industrial Electronics, 2011, vol. 58, no. 2, pp. 476–485. DOI: 10.1109/TIE.2010.2045322

  7. Williamson S. and Smith S. Pulsating torque and losses in multiphase induction machines. IEEE Transactions on Industry Applications, 2003, vol. 39, no. 4, pp. 986–993. DOI: 10.1109/TIA.2003.813722

  8. Golubev A.N., Ignatenko C.B. Elektrotekhnika, 2000, no. 6, pp. 28-31.

  9. Babaev M.B., Golubev A.N., Ignatenko C.B. II Mezhdunarodnaya konferentsiya po elektromekhanike i elektrotekhnologiyam (Krym, 1-5 October 1996), Moscow, MEI. Part 2, pp. 150-152.

  10. Rudakov V.V., Kozyaruk A.E. Sistemy upravleniya elektroprivodov. Pryamoe upravlenie momentom v elektroprivode peremennogo toka (Electric drive control Systems. Direct torque control in AC drive), St. Petersburg, SPGGI, 2007, 75 p.

  11. Kozyaruk A.E. Pryamoe upravlenie momentom v elektroprivode peremennogo toka mashin i mekhanizmov gornogo proizvodstva (Direct control of the moment in the electric drive of alternating current of machines and mechanisms of mining production), St. Petersburg, SPGGI, 2008, 98 p.

  12. Usol'tsev A.A. Sovremennyi asinkhronnyi elektroprivod optiko-mekhanicheskikh kompleksov (Modern asynchronous electric drive of optical-mechanical complexes), St. Petersburg, SPb NIU ITMO, 2011, 164 p.

  13. Xue V. Center-Aligned SVPWM Realization for 3-Phase 3- Level Inverter, Application Report SPRABS6 October 2012, 18 p. URI: http://www.ti.com/lit/an/sprabs6/sprabs6.pdf

  14. Le D.T., Averin S.V. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 4, pp. 155-163.

  15. Le D.T., Averin S.V. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 3, pp. 155-164.

  16. Privod peremennogo toka srednego napryazheniya ACS 5000, 1,521 MVt, 6,06,9 kV. Tekhnicheskii katalog. URI: http://sae-kip.com.ua/wp-content/uploads/2013/09/ACS5000-1.pdf

  17. Tereshkin V.M., Grishin D.A. Elektrotekhnika, 2017, no. 2, pp. 46-51.

  18. Tereshkin V.M., Grishin D.A., Makulov I.A. Elektrotekhnika, 2018, no. 5, pp. 60-67.

  19. Tereshkin V.M., Grishin D.A., Tereshkin V.V. Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii “Elektrotekhnicheskie kompleksy i sistemy”, Ufa, UGATU, 2016, pp. 49-55. URL: http://e-library.ufa-rb.ru/dl/lib_net_r/Tereshkin_Issledovanie_algoritmov_2016.pdf/view

  20. Tereshkin V.M., Grishin D.A., Makulov I.A. Elektronika i elektrooborudovanie transporta, 2017, no. 1, pp. 19-26.

  21. Tereshkin V.M., Grishin D.A., Makulov I.A. Elektronika i elektrooborudovanie transporta, 2018, no. 4, pp. 9-16.

  22. Tereshkin V.M. Vestnik Moskovskogo aviatsionnogo instituta, 2018, vol. 25, no. 3, pp. 212-219.

  23. Vol'dek A.I. Elektricheskie mashiny (Electric motors), Leningrad, Energiya, 1974, 840 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI