The impact of the of fuel supplying method to the combustion chamber on carbon oxides formation in combustion products of the gas turbine engine

Aeronautical and Space-Rocket Engineering

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Baklanov A. V.

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

e-mail: andreybaklanov@bk.ru

Abstract

The fuel burning in the combustion chamber of a gas turbine engine (GTE) is attended by toxic substances formation. Carbon oxides, having deleterious effect on human and environment, are of particular danger. In this regard, the article solves the actual problem of determining the optimal method of gaseous fuel supplying to the GTE combustion chamber to ensure low emission of carbon oxide.

The article considers the burner with two types of injectors, differing by the gas spray method. The first injector is a centrifugal gas injector (CGI), and the second one is a jet injector (JI).

A technique of target feeding of a jet, formed by the injector in the burner unit was developed.

The fire tests of nozzles were performed. While the tests performing, it was revealed that during the burner operation with the fuel feeding by the CGI, the flame front was being stabilized along the walls of the burner nozzle extension with visible hollow red colored core. Behind the main flame, the reddish “tail” which length corresponded to the length of the main flame was observed. This indicates that the fuel has no time to burn out in the primary zone, and flame front is stretching out.

In this regard, the quality determination of air-fuel mixture preparation in the swirled jet at the outlet of burners with two types of nozzles was performed. It was established, that the nozzle with the jet-like fuel atomization ensured the best mixing quality. The engine throttle characteristics were determined, and carbon oxides concentration in the combustion products measuring was performed by the results of the experiments. The results demonstrated that with the power increase the carbon oxide concentration level in the combustion products decreases. The 25% from the initial variant decrease in concentration was observed herewith for the combustion chamber with JI, which corresponds to the 28775-90 State Standard.

Keywords:

combustion chamber of gas-turbine engine, emission reduction, diffusion combustion, nozzle, burner, mixing

References


  1. Lefebvre A.H., Ballal D. R. Gas Turbine Combustion: Alternative Fuels and Emissions. Third Edition. CRC Press, 2010, 560 p.

  2. Lefebvre A.H. Fuel effects on gas turbine combustion- ignition, stability, and combustion efficiency. Engineering for Gas Turbines and Power, 1984, vol. 107, no. 1, 14 p. DOI: 10.1115/1.3239693

  3. Gritsenko E.A., Danil’chenko V.P., Lukachev S.V., Reznik V.E., Tsybizov Yu. I. Konvertirovanie aviatsionnykh GTD v gazoturbinnye ustanovki nazemnogo primeneniya (Aviation gas turbine engines conversion to the land-based gas turbines), Samara, SNTs RAN, 2004, 266 p.

  4. Markushin A.N., Merkushin V.K., Byshin V.M., Baklanov A.V. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2009, no. 3, pp. 70-72.

  5. Markushin A.N., Merkushin V.K., Byshin V.M., Baklanov A.V. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2010, no. 1, pp. 41-44.

  6. Gorbunov M.G. Vyborparametrov i raschet osnovnykh kamer sgoraniya GTD (Parameters selection and calculation of the GTE main combustion chambers), Moscow, MAI, 1972, 231 p.

  7. Baklanov A.V. Controlling fuel combustion process by burner design change in gas turbine engine combustion chamber. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 73-85.

  8. Mingazov B.G. Kamery sgoraniya gazoturbinnykh dvigatelei (The combustion chamber of gas turbine engines), Kazan, Kazanskii gosudarstvennyi tekhnicheskii universitet, 2004, 220 p.

  9. Ivanov Yu.V. Teoriya i raschet ventilyatsionnykh strui. Sbornik trudov. Leningrad, VTsSPS, 1965, pp. 249-257.

  10. Baklanov A.V. Low-emission combustion chamber of diffusion type employing micro flame burning process for converted aircraft gas turbine engine. Aerospace MAI Journal, 2017, vol. 24, no. 2, pp. 57-68.

  11. Markushin A.N., Baklanov A.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2013, no. 3-1(41), pp. 131-138. DOI: 10.18287/1998-6629-2013-0-3-1(41)-131-138

  12. Gritsenko E.A., Danil’chenko V.P., Lukachev S.V. Nekotorye voprosy proektirovaniya aviatsionnykh gazoturbinnykh dvigatelei (Some issues of the aircraft gas turbine engines design), Samara, SNTs RAN, 2002, 527 p.

  13. Sadiki A., Repp S., Schneider C., Dreizler A., Janicka J. Numerical and experimental investigations of confinedswirling combusting flows. Progress in Computational Fluid Dynamics, 2003, vol. 3, no. 2-4, pp. 78-88. DOI: 10.1504/PCFD.2003.003778

  14. Zheng H., Zhang Z., Li Y., Li Z. Feature-Parameter- Criterion for Predicting Lean Blowout Limit of Gas Turbine Combustor and Bluff Body Burner. Mathematical Problems in Engineering, 2013, vol. 2013, 17 p. DOI: 10.1155/2013/939234

  15. Roy G.D., Frolov S.M., Netzer D.W., Borisov A.A. High-Speed Deflagation and Detonation: Fundamentals and Control. International Colloquium on Control and Detonation Processes Held (Moscow, 4-7 July 2000). Moscow, ELEX-KM Publishers, 2001, 384 p.

  16. Kiesewetter F., Konle M., Sattelmayer T. Analysis of Combustion Induced Vortex Breakdown Driven Flame Flashback in a Premix Burner With Cylindrical Mixing Zone. Engineering for Gas Turbines and Power, 2007, vol. 129, no. 4, pp. 929-936. DOI:10.1115/1.2747259

  17. Lieuwen T.C., Yang V. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. AIAA (American Institute of Aeronautics & Ast), 2005, 657 p.

  18. Acharya V.S., Lieuwen T.C. Role of Azimuthal Flow Fluctuations on Flow Dynamics and Global Flame Response of Axisymmetric Swirling Flames. 52nd Aerospace Sciences Meeting, AIAA SciTech Forum (13­17 January 2014, National Harbor, Maryland), 15 p. DOI: 10.2514/6.2014-0654

  19. Durbin M.D., Vangsness M.D., Ballal D.R., Katta V.R. Study of Flame Stability in a Step Swirl Combustor. ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition (Houston, Texas, USA, 5–8 June 1995), vol. 3, 10 p. DOI:10.1115/95-GT-111

  20. Gokulakrishnan P., Fuller C.C., Klassen M.S., Joklik R.G., Kochar Y.N., Vaden S.N., Lieuwen T.C., Seitzman J.M. Experiments and modeling of propane combustion with vitiation. Combustion and Flame, 2014, vol. 161, no. 8, pp. 2038-2053. DOI: 10.1016/j.combustflame.2014.01.024

  21. Kanilo P.M., Podgornyi A.N., Khristich V.A. Energeticheskie i ekologicheskie kharakteristiki GTD pri ispol’zovanii uglevodorodnykh topliv i vodoroda (Energy and environmental characteristics of the gas turbine engines when employing hydrocarbon fuels and hydrogen), Kiev, Naukova dumka, 1987, 224 p.

  22. Agregaty gazoperekachivayushchie s gazoturbinnym privodom. Obshchie tekhnicheskie usloviya. GOST 28775-90 (Gas pumping units with gas turbine drive. General specifications. State Standard 28775-90), Moscow, Standartinform, 2005, 12 p.

mai.ru — informational site of MAI

Copyright © 1994-2024 by MAI